Advanced Search
RSS LinkedIn Twitter

Journal Archive

Platinum Metals Rev., 2011, 55, (4), 251

doi:10.1595/147106711x592448

The Discoverers of the Ruthenium Isotopes

Updated information on the discoveries of the six platinum group metals to 2010

SHARE THIS PAGE:

Article Synopsis

This review looks at the discovery and the discoverers of the thirty-eight known ruthenium isotopes with mass numbers from 87 to 124 found between 1931 and 2010. This is the sixth and final review on the circumstances surrounding the discoveries of the isotopes of the six platinum group elements. The first review on platinum isotopes was published in this Journal in October 2000 (1), the second on iridium isotopes in October 2003 (2), the third on osmium isotopes in October 2004 (3), the fourth on palladium isotopes in April 2006 (4) and the fifth on rhodium isotopes in April 2011 (5). An update on the new isotopes of palladium, osmium, iridium and platinum discovered since the previous reviews in this series is also included.

Naturally Occurring Ruthenium

Of the thirty-eight known isotopes of ruthenium, seven occur naturally with the authorised isotopic abundances (6) shown in Table I.

Table I

The Naturally Occurring Isotopes of Ruthenium

Mass numberIsotopic Abundance, %
96Ru 5.54
98Ru 1.87
99Ru 12.76
100Ru 12.60
101Ru 17.06
102Ru 31.55
104Ru 18.62

The isotopes were first detected in 1931 by Aston (7, 8) using a mass spectrograph at the Cavendish Laboratory, Cambridge University, UK. Because of difficult experimental conditions due to the use of poor quality samples, Aston actually only detected six of the isotopes and obtained very approximate percentage abundances. However, he did speculate on the existence of a seventh isotope with mass number 98. In 1943 Ewald (9) of the Aus dem Kaiser Wilhelm-Institut für Chemie, Berlin-Dahlem, Germany, carried out a more refined spectrographic analysis and obtained precision values for the isotopic abundances, including confirming the isotope of mass number 98.

Artificial Ruthenium Isotopes

Early investigations of activities associated with ruthenium tended to lead to half-life values which initially did not appear to be connected to each other. For example, in 1935 Kurchatov, Nemenov and Selinov (10) used slow neutron bombardment to obtain half-lives of 40 seconds, 100 seconds, 11 hours and 75 hours, and in 1936 Livingood (11) used deuteron bombardment to obtain different half-lives of 4 hours, 39 hours, 11 days and 46 days. In 1937, Pool, Cork and Thornton (12) used fast neutron bombardment and obtained activities with half-lives of 24 minutes and 3.6 hours and in 1940 Nishina et al. (13) also used fast neutron bombardment to obtain ruthenium activities of 4 hours and 60 hours and a rhodium activity of 34 hours. However, Nishina et al. (14) later speculated that the 60 hour activity was in reality a mixture of the 4 hour ruthenium and 34 hour rhodium activities plus a further long lived ruthenium activity which had not been identified. They also pointed out that in 1940 Segrè and Seaborg (15) had found a 4 hour half-life ruthenium activity in fission products. In 1938, De Vries and Veldkamp (16) used the different technique of slow neutron bombardment and had identified three activities: a 4 hour activity which they suggested was 103Ru, a 20 hour activity which they suggested was 105Ru and a 45 day half-life activity which they suggested was 105Rh. All of these suggestions were incorrect but it would appear that all of the activities observed with an approximate 4 hour half-life were probably 105Ru and the 46 day activity identified by Livingood and the equal 45 day activity identified by De Vries and Veldkamp were probably 103Ru. None of these observations could be seriously considered as being contenders to the discovery of any isotopes since the discovery criterion of an accurate determination of the atomic mass number had not been met.

Discovery Date

As discussed in previous articles in the present series (1–5), the actual year of discovery is generally considered to be that when the details of the discovery were placed in the public domain such as manuscript dates or conference report dates. However, once again complications arise with the case of internal reports which may not be placed in the public domain until several years later. As with rhodium (5), several ruthenium isotopes were first identified during the highly secretive Plutonium Project of the Second World War which was not actually published until 1951 (17), although much of the information had become available in 1946 in the tables of Siegel (18, 19) or in the 1948 edition of the “Table of Isotopes” (20).

Discovery Acceptance

The discovery criteria used in this series of papers relate to the identification of the ground state and those isomers in which the half-life exceeds one millisecond, except in the very special circumstances where the ground state half-life is itself very short and the half-lives of corresponding isomers are of a similar order. This procedure was adopted to keep the tables succinct by avoiding the inclusion of the exceedingly large number of isomers with half-lives of less than one millisecond which are known for the isotopes of the platinum group elements and which would have greatly complicated the text.

Half-Lives

Selected half-lives used in Table II were generally those accepted in the revised NUBASE database (21) although literature values were used when either these were not available or had been superseded by later determinations.

Table II

The Discoverers of the Ruthenium Isotopes

Mass numberaHalf-lifeDecay modesYear of discoveryDiscoverersReferencesNotes
87 psb EC + β+ ? 1994 Rykaczewski et al. 22, 23
88 1.3 s EC + β+ 1994 Hencheck et al. 24 A
89 1.38 s EC + β+ 1992 Mohar et al. 25, 26 B
90 12 s EC + β+ 1991 Zhou et al. 27, 28 C
91 7.9 s EC + β+ 1983 Komninos, Nolte and Blasi 29
91m 7.6 s EC + β+, IT ? 1982 Hagberg et al. 30
92 3.65 min EC + β+ 1971 (a) Arl't et al. (b) De Jesus and Neirinckx (a) 31, 32
(b) 33
93 59.7 s EC + β+ 1955 Aten Jr. and De Vries-Hamerling 34 D
93m 10.8 s EC + β+, IT 1976 De Lange et al. 35 E
94 51.8 min EC + β+ 1952 Van Der Wiel and Aten Jr. 36
95 1.643 h EC + β+ 1948 Eggen and Pool 37 F
96 Stable 1931 Aston 7, 8
97 2.9 d EC + β+ 1944 Sullivan, Sleight and Gladrow 38, 39 G
98 Stable 1943 Ewald 9
99 Stable 1931 Aston 7, 8
100 Stable 1931 Aston 7, 8
101 Stable 1931 Aston 7, 8
102 Stable 1931 Aston 7, 8
103 39.25 d β 1944 (a) Sullivan, Sleight and Gladrow (b) Bohr and Hole (a) 38, 40
(b) 41
H
103m 1.69 ms IT 1964 Brandi et al. 42
104 Stable 1931 Aston 7, 8
105 4.44 h β 1944 (a) Sullivan, Sleight and Gladrow (b) Bohr and Hole (a) 38, 43
(b) 41
H
106 371.8 d β 1946 (a) Glendenin (b) Grummitt and Wilkinson (a) 44, 45
(b) 46
I
107 3.75 min β 1962 Pierson, Griffin and Coryell 47 J
108 4.55 min β 1955 Baró, Rey and Seelmann-Eggebert 48
109 34.5 s β 1966 Griffiths and Fritze 49, 50 K
110 11.6 s β 1969 Wilhelmy et al. 51, 52
111 2.12 s β 1975 Fettweis and del Marmol 53 L
112 1.7 s β 1969 Wilhelmy et al. 51, 52
113 800 ms β 1988 Penttilä et al. 54 M
113m 510 ms IT ?, β ? 1998 Kurpeta et al. 55
114 540 ms β 1991 Leino et al. 56
115 318 ms β 1992 Äystö et al. 57, 58
115m 76 ms IT 2010 Kurpeta et al. 59
116 204 ms β 1994 Bernas et al. 60 N
117 142 ms β 1994 Bernas et al. 60 N
118 123 ms β 1994 Bernas et al. 60 N
119 psb β ? 1995 Czajkowski et al. 61, 62
120 psb β ? 2010 Ohnishi et al. 63 P
121 psb β ? 2010 Ohnishi et al. 63
122 psb β ? 2010 Ohnishi et al. 63
123 psb β ? 2010 Ohnishi et al. 63
124 psb β ? 2010 Ohnishi et al. 63

a m = isomeric state

b ps = particle stable (resistant to proton and neutron decay)

Notes to Table II

A 88Ru Hencheck et al. (24) only proved that the isotope was particle stable. The half-life was first determined by Wefers et al. in 1999 (64).
B 89Ru Mohar et al. (25, 26) only proved that the isotope was particle stable. The half-life was first determined by Li Zhankui et al. in 1999 (65).
C 90Ru Mohar et al. (25, 26) also claimed the discovery of this isotope in 1992 and appeared to be unaware of the prior discovery by Zhou et al. (27, 28). However they only determined that the isotope was particle stable whereas Zhou et al. had already determined the half-life.
D 93Ru The discovery by Aten Jr. and De Vries-Hamerling (34) is considered to be tentative but was confirmed by Doron and Lanford (66) in 1971.
E 93mRu Doron and Lanford (66) also claimed to have discovered this isomer in 1971 but de Lange et al. (35) could not confirm their half-life of 45 s.
F 95Ru Mock et al. (67) appeared to independently claim the discovery even though their manuscript date was October 1948; the discovery claim by Eggen and Pool (37) had already been published in July 1948.
G 97Ru The 1944 discovery by Sullivan, Sleight and Gladrow (38) was not made public for this isotope until included in the 1946 public report (39).
H 103Ru and 105Ru The 1944 discovery for these isotopes by Sullivan, Sleight and Gladrow (38) was not made public until included in the 1946 table of Siegel (18, 19).
I 106Ru Although produced in 1946, the results of Glendenin (44) were only made public at this time by including in the 1946 table of Siegel (18, 19).
J 107Ru A preliminary identification of this isotope by Glendenin (68, 69) in 1944 was made public in the 1946 table of Siegel (18, 19).
K 109Ru Franz and Herrmann (70) proposed the existence of a 12.9 s half-life isomer but this could not be found by Kaffrell et al. (71).
L 111Ru Franz and Herrmann (70) also tentatively identified this isotope in 1975.
M 113Ru Franz and Herrmann (70) tentatively claimed to have discovered this isotope in 1975 but Penttilä et al. (54) consider that the isotope observed was probably 113Rh.
N 116Ru to 118Ru Bernas et al. (60) only determined that these isotopes were particle stable. The half-lives were first measured by Montes et al. (72) in 2005.
P 120Ru A 1995 claim by Czajkowski et al. (61) to have discovered this isotope was highly preliminary and was not included in the later 1997 report by Bernas et al. (62). Ohnishi et al. (63) detected this isotope in 2010 but did not claim the discovery possibly under the impression that the isotope had already been found but they can be considered to be the actual discoverers.

An Update on the Discovery and Discoverers of the Platinum Group of Elements

Since the publication of the first four reviews in this series (1–4) a number of new isotopes have been discovered for palladium, osmium, iridium and platinum and the discovery circumstances for these isotopes are listed in Table III. The total number of isotopes for each element and their mass number ranges are now as shown in Table IV.

In addition the half-life of 199Ir was unknown until determined to be 6 seconds by Kurtukian-Nieto (77).

Table III

New Discoveries

ElementMass numberaHalf-lifeDecay modeYear of discoveryDiscoverersReferencesNotes
Pd 125 psb β ? 2008 Ohnishi et al.

73

126 psb β ? 2008 Ohnishi et al. 73
127 psb β ? 2010 Ohnishi et al. 63
128 psb β ? 2010 Ohnishi et al. 63
Os 161 570 μs α 2008 Page et al. 74
195m 26 ns IT 2002 Podolyák et al. 75 A1
197 2.8 min β 2003 Xu et al. 76
198 psb β ? 2006 Kurtukian-Nieto et al. 77, 78 B1
199 5 s β 2005 Kurtukian-Nieto et al. 79
200 6 s β 2005 Kurtukian-Nieto et al. 79
201 psb β ? 2007 Kurtukian-Nieto 78
Ir 200 psb β ? 2006 Kurtukian-Nieto et al. 77, 78 B1
201 psb β ? 2006 Kurtukian-Nieto et al. 77, 78 B1
202 11 s β 2006 Kurtukian-Nieto et al. 77, 78 B1
203 psb β ? 2006 Kurtukian-Nieto et al. 77, 78 B1
Pt 203 10.1 s β 2005 Kurtukian-Nieto et al. 79
204 10.3 s β 2006 Kurtukian-Nieto et al. 77, 78 B1, C1
205 psb β ? 2010 Alvarez-Pol et al. 80 D1

[i]am = isomeric state

[ii]bps = particle stable (resistant to proton and neutron decay)

Notes to Table III

A1 Although the ground state of 195Os has not been discovered information on the very high level isomer is included to indicate that the isotope has been observed.
B1 Kurtukian-Nieto et al. (77) only showed results in the form of a chart with actual mass numbers being given by Kurtukian-Nieto (78) in 2007.
C1 Kurtukian-Nieto et al. (77) only determined the isotope to be particle stable. The half-life was first determined by Morales et al. (81) in 2008.
D1 Evidence for this isotope was also given by Benlliure et al. (82).
Table IV

Total Number of Isotopes and Mass Ranges Known for Each Platinum Group Element to 2010

ElementNumber of known isotopesKnown mass number ranges
Ru 38 87–124
Rh 38 89–126
Pd 38 91–128
Os 41 161–201
Ir 40 164–203
Pt 40 166–205

Some of the Terms Used for This Review

Atomic number The number of protons in the nucleus.
Mass number The combined number of protons and neutrons in the nucleus.
Nuclide and isotope A nuclide is an entity containing a unique number of protons and neutrons in the nucleus. For nuclides of the same element the number of protons remains the same but the number of neutrons may vary. Such nuclides are known collectively as the isotopes of the element. Although the term isotope implies plurality it is sometimes used loosely in place of nuclide.
Isomer/isomeric state An isomer or isomeric state is a high energy state of a nuclide which may decay by isomeric transition (IT) as described in the table below, although certain low-lying states may decay independently to other nuclides rather than the ground state.
Half-life The time taken for the activity of a radioactive nuclide to fall to half of its previous value.
Electron volt (eV) The energy acquired by any charged particle carrying a unit (electronic) charge when it falls through a potential of one volt, equivalent to 1.602 × 10−19 J. The more useful unit is the mega (million) electron volt (MeV).

Decay Modes

α Alpha decay is the emission of alpha particles which are 4He nuclei. Thus the atomic number of the daughter nuclide is two lower and the mass number is four lower.
β Beta or electron decay for neutron-rich nuclides is the emission of an electron (and an anti-neutrino) as a neutron in the nucleus decays to a proton. The mass number of the daughter nuclide remains the same but the atomic number increases by one.
β+ Beta or positron decay for neutron-deficient nuclides is the emission of a positron (and a neutrino) as a proton in the nucleus decays to a neutron. The mass number of the daughter nuclide remains the same but the atomic number decreases by one. However this decay mode cannot occur unless the decay energy exceeds 1.022 MeV (twice the electron mass in energy units). Positron decay is always associated with orbital electron capture (EC).
EC Orbital electron capture in which the nucleus captures an extranuclear (orbital) electron which reacts with a proton to form a neutron and a neutrino, so that, as with positron decay, the mass number of the daughter nuclide remains the same but the atomic number decreases by one.
IT Isomeric transition in which a high energy state of a nuclide (isomeric state or isomer) usually decays by cascade emissions of γ (gamma) rays (the highest energy form of electromagnetic radiation) to lower energy levels until the ground state is reached.
p Proton decay in which a proton is emitted from the nucleus so both the atomic number and mass number decrease by one. Such a nuclide is said to be ‘particle unstable’.
n Neutron decay in which a neutron is emitted from the nucleus so the atomic number remains the same but the atomic mass is decreased by one. Such a nuclide is said to be ‘particle unstable’.

Professor Michael Thoennessen

Michael Thoennessen (Figure 1) is a Professor in the Department of Physics & Astronomy at Michigan State University (MSU), USA, and Associate Director at the National Superconducting Cyclotron Laboratory (NSCL) located on the campus of MSU. His main research interest is the study of exotic nuclei far from stability, concentrating on neutron-unbound nuclei beyond the neutron dripline. He performs most of his experiments at NSCL with the Modular Neutron Array (MoNA) – a large-area high efficiency neutron detector (Figure 2). He recently initiated a project to document the discovery of all isotopes. These reviews are currently being published in the journal Atomic Data and Nuclear Data Tables. The detailed description for each isotope has been carried out for about 70% and will be finished next year. Whilst some of the discovery criteria differ from these adopted here, there is generally good agreement as to assigning credit to the discoverers.

Fig. 1.

Professor Michael Thoennessen

 

Fig. 2.

The Modular Neutron Array (MoNA) at the National Superconducting Cyclotron Laboratory (NSCL) located on the campus of Michigan State University (MSU), USA (Courtesy of T. Baumann)

 

The Number of Nuclides

If a nuclide is defined as being a unique combination of protons and neutrons, then the platinum group elements currently include 235 known nuclides out of a total for all elements of about 3200. Of these, 286 are primordial, that is they were present when the Earth was formed and are still present now. The remaining ∼2900 are described for these purposes as being ‘artificial’ radioactive nuclides, since a number of the primordial nuclides are also radioactive but with very long half-lives. There exist in nature a significant number of nuclides other than those of primordial origin due to various radioactive decay modes of naturally occurring thorium and uranium isotopes. The limits on the stability of the nuclides are defined by the proton and neutron drip lines beyond which the nuclides lose particle stability, become unbound and emit protons in the case of the proton drip line and neutrons in the case of the neutron drip line. Nuclides do exist beyond the drip lines but in the case of the light elements the half-lives immediately plunge to very short values. Thoennessen (83) has discussed the difficulties in producing nuclides close to the edges of the drip lines, and whilst for the lighter elements both the proton and neutron drip lines have been reached, only the proton drip line has been approached throughout the Periodic Table. For the medium to heavy elements, a large number of nuclides remain to be discovered before the neutron drip line is reached. Thoennessen and Sherrill (84) predict that up to the presently known limits of the Periodic Table the number of nuclides remaining to be discovered is likely to be at least equal to the number already known. There is optimism that at least 1000 of these will be discovered in the next ten years.

BACK TO TOP

References

  1.  J. W. Arblaster, Platinum Metals Rev., 2000, 44, (4), 173 LINK http://www.technology.matthey.com/article/44/4/173-178
  2.  J. W. Arblaster, Platinum Metals Rev., 2003, 47, (4), 167 LINK http://www.technology.matthey.com/article/47/4/167-174
  3.  J. W. Arblaster, Platinum Metals Rev., 2004, 48, (4), 173 LINK http://www.technology.matthey.com/article/48/4/173-179
  4.  J. W. Arblaster, Platinum Metals Rev., 2006, 50, (2), 97 LINK http://www.technology.matthey.com/article/50/2/97-103
  5.  J. W. Arblaster, Platinum Metals Rev., 2011, 55, (2), 124 LINK http://www.technology.matthey.com/article/55/2/124-134
  6.  M. Berglund and M. E. Wieser, Pure Appl. Chem., 2011, 83, (2), 397 LINK http://dx.doi.org/10.1351/PAC-REP-10-06-02
  7.  F. W. Aston, Nature, 1931, 127, (3198), 233 LINK http://dx.doi.org/10.1038/127233a0
  8.  F. W. Aston, Proc. R. Soc. Lond. A, 1931, 132, (820), 487 LINK http://dx.doi.org/10.1098/rspa.1931.0114
  9.  H. Ewald, Z. Phys. A, 1944, 122, (5–8), 487 LINK http://dx.doi.org/10.1007/BF01342769
  10.  I. Kurchatov, L. Nemenov and I. Selinov, Compt. rend., 1935, 200, 2162
  11.  J. J. Livingood, Phys. Rev., 1936, 50, (5), 425 LINK http://dx.doi.org/10.1103/PhysRev.50.425
  12.  M. L. Pool, J. M. Cork and R. L. Thornton, Phys. Rev., 1937, 52, (3), 239 LINK http://dx.doi.org/10.1103/PhysRev.52.239
  13.  Y. Nishina, T. Yasaki, K. Kimura and M. Ikawa, Phys. Rev., 1941, 59, (3), 323 LINK http://dx.doi.org/10.1103/PhysRev.59.323.2
  14.  Y. Nishina, T. Yasaki, K. Kimura and M. Ikawa, Phys. Rev., 1941, 59, (8), 677 LINK http://dx.doi.org/10.1103/PhysRev.59.677
  15.  E. Segrè and G. T. Seaborg, Phys. Rev., 1941, 59, (2), 212 LINK http://dx.doi.org/10.1103/PhysRev.59.212.2
  16.  H. de Vries and J. Veldkamp, Physica, 1938, 5, (4), 249 LINK http://dx.doi.org/10.1016/S0031-8914(38)80082-3
  17.  “Radiochemical Studies: The Fission Products”, eds. C. D. Coryell and N. Sugarman, National Nuclear Energy Series, Plutonium Project Record, Division IV, Vol. 9, McGraw-Hill, New York, USA, 1951, in 3 volumes
  18.  J. M. Siegel, Rev. Mod. Phys., 1946, 18, (4), 513 LINK http://dx.doi.org/10.1103/RevModPhys.18.513
  19.  J. M. Siegel, J. Am. Chem. Soc., 1946, 68, (11), 2411 LINK http://dx.doi.org/10.1021/ja01215a600
  20.  G. T. Seaborg and I. Perlman, Rev. Mod. Phys., 1948, 20, (4), 585 LINK http://dx.doi.org/10.1103/RevModPhys.20.585
  21.  G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra, Nucl. Phys. A, 2003, 729, (1), 3 LINK http://dx.doi.org/10.1016/j.nuclphysa.2003.11.001
  22.  K. Rykaczewski, R. Anne, G. Auger, D. Bazin, C. Borcea, V. Borrel, J. M. Corre, T. Dörfler, A. Fomichov, R. Grzywacz, D. Guillemaud-Mueller, R. Hue, M. Huyse, Z. Janas, H. Keller, M. Lewitowicz, S. Lukyanov, A. C. Mueller, Yu. Penionzhkevich, M. Pfützner, F. Pougheon, M. G. Saint-Laurent, K. Schmidt, W. D. Schmidt-Ott, O. Sorlin, J. Szerypo, O. Tarasov, J. Wauters and J. Zylicz, Phys. Rev. C, 1995, 52, (5), R2310 LINK http://dx.doi.org/10.1103/PhysRevC.52.R2310
  23.  M. Lewitowicz, R. Anne, G. Auger, D. Bazin, C. Borcea, V. Borrel, J. M. Corre, T. Dörfler, A. Fomichov, R. Grzywacz, D. Guillemaud-Mueller, R. Hue, M. Huyse, Z. Janas, H. Keller, S. Lukyanov, A. C. Mueller, Yu. Penionzhkevich, M. Pfützner, F. Plougheon, K. Rykaczewski, M. G. Saint-Laurent, K. Schmidt, W. D. Schmidt-Ott, O. Sorlin, J. Szerypo, O. Tarasov, J. Wauters and J. Zylicz, Nucl. Phys. A, 1995, 588, (1), c197 LINK http://dx.doi.org/10.1016/0375-9474(95)00139-R
  24.  M. Hencheck, R. N. Boyd, M. Hellström, D. J. Morrissey, M. J. Balbes, F. R. Chloupek, M. Fauerbach, C. A. Mitchell, R. Pfaff, C. F. Powell, G. Raimann, B. M. Sherrill, M. Steiner, J. Vandegriff and S. J. Yennello, Phys. Rev. C, 1994, 50, (4), 2219 LINK http://dx.doi.org/10.1103/PhysRevC.50.2219
  25.  M. F. Mohar, S. J. Yennello, W. Benenson, D. J. Morrissey, N. A. Orr, B. M. Sherrill and J. A. Winger, ‘New Nuclei Along the Proton Drip Line Near Z = 40’, 6th International Conference on Nuclei Far from Stability and 9th International Conference on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19th–24th July, 1992, in “Nuclei Far from Stability/Atomic Masses and Fundamental Constants”, eds. R. Neugart and A. Wohr, Institute of Physics Conference Series, Institute of Physics Publishing, Bristol, UK, and Philadelphia, USA, 1993, Vol. 132, pp. 397–399
  26.  S. J. Yennello, J. A. Winger, T. Antaya, W. Benenson, M. F. Mohar, D. J. Morrissey, N. A. Orr and B. M. Sherrill, Phys. Rev. C, 1992, 46, (6), 2620 LINK http://dx.doi.org/10.1103/PhysRevC.46.2620
  27.  S. Zhou, X. Zeng, J. Li, Z. Dong, S. Wen, H. Zheng and A. Hu, Chin. J. Nucl. Phys., 1991, 13, (3), 193
  28.  S. Zhou, J. Li, X. Zeng, S. Wen, Z. Dong, H. Zheng and H. Hu, Z. Phys. A, 1994, 350, (1), 7 LINK http://dx.doi.org/10.1007/BF01285044
  29.  P. Komninos, E. Nolte and P. Blasi, Z. Phys. A, 1983, 314, (2), 135 LINK http://dx.doi.org/10.1007/BF01879871
  30.  E. Hagberg, J. C. Hardy, H. Schmeing, E. T. H. Clifford and V. T. Koslowsky, Nucl. Phys. A, 1983, 395, (1), 152 LINK http://dx.doi.org/10.1016/0375-9474(83)90092-1
  31.  R. Arl't, B. Bayar, N. G. Zaitseva, B. Kratsik, A. F. Novgorodov, F. Severa and C. T. Min, Zh. Eksperim. Teor. Fiz., Pis'ma Red. , 1971, 13, (10), 556; translated into English in JETP Lett., 1971, 13, (10), 397 LINK http://www.jetpletters.ac.ru/ps/1586/article_24337.shtml
  32.  R. Arlt, B. Bayar, B. Kracik, A. F. Novgorodov, F. Severa, T. T. Minh and N. G. Zaitseva, J. Inorg. Nucl. Chem., 1972, 34, (10), 3001 LINK http://dx.doi.org/10.1016/0022-1902(72)80094-0
  33.  A. S. M. De Jesus and R. D. Neirinckx, Nucl. Phys. A, 1972, 188, (1), 161 LINK http://dx.doi.org/10.1016/0375-9474(72)90191-1
  34.  A. H. W. Aten Jr. and T. De Vries-Hamerling, Physica, 1955, 21, (1–5), 544 LINK http://dx.doi.org/10.1016/S0031-8914(54)92808-6
  35.  J. C. de Lange, J. Bron, A. van Poelgeest, H. Verheul and W. B. Ewbank, Z. Phys. A, 1976, 279, (1), 79 LINK http://dx.doi.org/10.1007/BF01409094
  36.  A. Van Der Wiel and A. H. W. Aten Jr., Physica, 1952, 18, (5), 356 LINK http://dx.doi.org/10.1016/S0031-8914(52)80158-2
  37.  D. T. Eggen and M. L. Pool, Phys. Rev., 1948, 74, (1), 57 LINK http://dx.doi.org/10.1103/PhysRev.74.57
  38.  W. H. Sullivan, N. R. Sleight and E. M. Gladrow, National Nuclear Energy Series, Division IV, Plutonium Project Report CC-1493, March 1944
  39.  W. H. Sullivan, N. R. Sleight and E. M. Gladrow, Phys. Rev., 1946, 70, (9–10), 778 LINK http://dx.doi.org/10.1103/PhysRev.70.778
  40.  W. H. Sullivan, N. R. Sleight and E. M. Gladrow, Paper 111: ‘Identification, Characterization and Mass Assignment of a 42d Ru Activity in Neutron- and Deuterium-Bombarded Ruthenium’, in “Radiochemical Studies: The Fission Products”, eds. C. D. Coryell and N. Sugarman, Vol. 3, National Nuclear Energy Series, Plutonium Project Record, Division IV, Vol. 9, McGraw-Hill, New York, USA, 1951, p. 832
  41.  E. Bohr and N. Hole, Arkiv Mat. Astron. Fysik A, 1945, 32, (15), 1
  42.  K. Brandi, R. Engelmann, V. Hepp, E. Kluge, H. Krehbiel and U. Meyer-Berkhout, Nucl. Phys., 1964, 59, (1), 33 LINK http://dx.doi.org/10.1016/0029-5582(64)90111-7
  43.  W. H. Sullivan, N. R. Sleight and E. M. Gladrow, Paper 105: ‘Characterization of 4.5 h Ru Produced in Fission’, in “Radiochemical Studies: The Fission Products”, eds. C. D. Coryell and N. Sugarman, Vol. 3, National Nuclear Energy Series, Plutonium Project Record, Division IV, Vol. 9, McGraw-Hill, New York, USA, 1951, p. 808
  44.  L. E. Glendenin, National Nuclear Energy Series, Division IV, Plutonium Project, Vol. IV-9B, 1946, p. 7.18.3
  45.  L. E. Glendenin and E. P. Steinberg, Paper 103: ‘Long-Lived Ruthenium-Rhodium Chains in Fission’ in “Radiochemical Studies: The Fission Products”, eds. C. D. Coryell and N. Sugarman, Vol. 3, National Nuclear Energy Series, Plutonium Project Record, Division IV, Vol. 9, McGraw-Hill, New York, USA, 1951, p.793
  46.  W. E. Grummitt and G. Wilkinson, Nature, 1946, 158, (4005), 163 LINK http://dx.doi.org/10.1038/158163a0
  47.  W. R. Pierson, H. C. Griffin and C. D. Coryell, Phys. Rev., 1962, 127, (5), 1708 LINK http://dx.doi.org/10.1103/PhysRev.127.1708
  48.  G. B. Baró, P. Rey and W. Seelmann-Eggebert, Z. Naturforsch., 1955, 10a, 81
  49.  K. Fritze and K. Griffiths, Radiochim. Acta, 1967, 7, (1), 59
  50.  K. Griffiths and K. Fritze, Fresenius' J. Anal. Chem., 1967, 226, (1), 122 LINK http://dx.doi.org/10.1007/BF00500589
  51.  J. B. Wilhelmy, ‘High-Resolution Gamma and X-Ray Spectroscopy on Unseparated Fission Products’, Report No. UCRL-18978, Lawrence Radiation Laboratory, University of California, Berkeley, USA, 1969
  52.  J. B. Wilhelmy, S. G. Thompson, J. O. Rasmussen, J. T. Routti and J. E. Phillips, in “Nuclear Chemistry Division Annual Report, 1969”, eds. N. Edelstein, D. Hendrie and M. Michel, Report No. UCRL-19530, Lawrence Radiation Laboratory, University of California, Berkeley, USA, 1970, p. 178
  53.  P. Fettweiss and P. del Marmol, Z. Phys. A, 1975, 275, (4), 359 LINK http://dx.doi.org/10.1007/BF01434026
  54.  H. Penttilä, P. Taskinen, P. Jauho, V. Koponen, C. N. Davids and J. Äystö, Phys. Rev. C, 1988, 38, (2), 931 LINK http://dx.doi.org/10.1103/PhysRevC.38.931
  55.  J. Kurpeta, G. Llersonneau, J. C. Wang, P. Dendooven, A. Honkanen, M. Huhta, M. Oinonen, H. Penttilä, K. Paräjärvi, J. R. Persson, A. Plochocki and J. Äystö, Eur. Phys. J. A, 1998, 2, (3), 241 LINK http://dx.doi.org/10.1007/s100500050114
  56.  M. Leino, P. P. Jauho, J. Äystö, P. Decrock, P. Dendooven, K. Eskola, M. Huyse, A. Jokinen, J. M. Parmonen, H. Penttilä, G. Reusen, P. Taskinen, P. Van Duppen and J. Wauters, Phys. Rev. C, 1991, 44, (1), 336 LINK http://dx.doi.org/10.1103/PhysRevC.44.336
  57.  J. Äystö, A. Astier, T. Enqvist, K. Eskola, Z. Janas, A. Jokinen, K.-L. Kratz, M. Leino, H. Penttilä, B. Pfeiffer and J. Zylicz, Phys. Rev. Lett., 1992, 69, (8), 1167 LINK http://dx.doi.org/10.1103/PhysRevLett.69.1167
  58.  A. Jokinen, J. Äystö, K. Eskola, T. Enqvist, Z. Janas, P. P. Jauho, M. Leino, J. M. Parmonen, H. Penttilä and J. Zylicz, ‘New Neutron-Rich Isotopes in the Zirconium-to-Palladium Region; Gamow-Teller Decay of Deformed Nuclei’, 6th International Conference on Nuclei Far from Stability and 9th International Conference on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19th–24th July, 1992, in “Nuclei Far from Stability/Atomic Masses and Fundamental Constants”, eds. R. Neugart and A. Wohr, Institute of Physics Conference Series, Institute of Physics Publishing, Bristol, UK, and Philadelphia, USA, 1993, Vol. 32, pp. 563–568
  59.  J. Kurpeta, J. Rissanen, A. Plochocki, W. Urban, V.-V. Elomaa, T. Eronen, J. Hakala, A. Jokinen, A. Kankainen, P. Karvonen, T. Malkiewicz, I. D. Moore, H. Penttilä, A. Saastamoinen, G. S. Simpson, C. Weber and J. Äystö, Phys. Rev. C, 2010, 82, (6), 064318 (5 pages) LINK http://dx.doi.org/10.1103/PhysRevC.82.064318
  60.  M. Bernas, S. Czajkowski, P. Armbruster, H. Geissel, Ph. Dessagne, C. Donzaud, H.-R. Faust, E. Hanelt, A. Heinz, M. Hesse, C. Kozhuharov, Ch. Miehe, G. Münzenberg, M. Pfützner, C. Röhl, K.-H. Schmidt, W. Schwab, C. Stéphan, K. Sümmerer, L. Tasson-Got and B. Voss, Phys. Lett. B, 1994, 331, (1), 19 LINK http://dx.doi.org/10.1016/0370-2693(94)90937-7
  61.  S. Czajkowski, F. Amiel, P. Armbruster, M. Bernas, Ph. Dessagne, C. Donzaud, C. Engelmann, H. R. Faust, H. Geissel, E. Hanelt, A. Hienz, M. Hesse, C. Kozhuharov, Ch. Miehe, G. Münzenberg, M. Pfützner, C. Röhl, K.-H. Schmidt, W. Schwab, C. Stéphan, K. Sümmerer, L. Tasson-Got and B. Voss, ‘Identification of New Neutron-Rich Isotopes Produced in Fission of Relativistic 238U Projectiles at the GSI Fragment Separator’, ENAM 95 – International Conference on Exotic Nuclei and Atomic Masses, Arles, France, 19th–23rd June, 1995, eds. M. de Saint Simon and O. Sorlin, Editions Frontieres, Gif-sur-Yvette, France, 1995, pp. 553–554
  62.  M. Bernas, C. Engelmann, P. Armbruster, C. Czajkowski, F. Amiel, C. Böckstiegel, Ph. Dessagne, C. Donzaud, H. Geissel, A. Heinz, Z. Janas, C. Kozhuharov, Ch. Miehé, G. Münzenberg, M. Pfützner, W. Schwab, C. Stéphan, K. Sümmerer, L. Tassan-Got and B. Voss, Phys. Lett. B, 1997, 415, (2), 111 LINK http://dx.doi.org/10.1016/S0370-2693(97)01216-1
  63.  T. Ohnishi, T. Kubo, K. Kusaka, A. Yoshida, K. Yoshida, M. Ohtake, N. Fukuda, H. Takeda, D. Kameda, K. Tanaka, N. Inabe, Y. Yanagisawa, Y. Gono, H. Watanabe, H. Otsu, H. Baba, T. Ichihara, Y. Yamaguchi, M. Takechi, S. Nishimura, H. Ueno, A. Yoshimi, H. Sakurai, T. Motobayashi, T. Nakao, Y. Mizoi, M. Matsushita, K. Ieki, N. Kobayashi, K. Tanaka, Y. Kawada, N. Tanaka, S. Deguchi, Y. Satou, Y. Kondo, T. Nakamura, K. Yoshinaga, C. Ishii, H. Yoshii, Y. Miyashita, N. Uematsu, Y. Shiraki, T. Sumikama, J. Chiba, E. Ideguchi, A. Saito, T. Yamaguchi, I. Hachiuma, T. Suzuki, T. Moriguchi, A. Ozawa, T. Ohtsubo, M. A. Famiano, H. Geissel, A. S. Nettleton, O. B. Tarasov, D. P. Bazin, B. M. Sherrill, S. L. Manikonda and J. A. Nolen, J. Phys. Soc. Jpn., 2010, 79, (7), 073201 (5 pages) LINK http://dx.doi.org/10.1143/JPSJ.79.073201
  64.  E. Wefers, T. Faestermann, M. Münch, R. Schneidner, A. Stolz, K. Sümmerer, J. Friese, H. Geissel, M. Hellström, P. Kienle, H.-J. Körner, G. Münzenberg, C. Schlegel, P. Thirolf, H. Weick and K. Zeitelhack, ‘Halflives of rp-Process Waiting Point Nuclei’, Experimental Nuclear Physics in Europe. Facing the Next Millenium, Devilla, Spain, 21st–26th June, 1999, in “AIP Conference Proceedings”, eds. B. Rubio, M. Lozano and W. Gelletly, American Institute of Physics, New York, USA, 1999, Vol. 495, pp. 375–376 LINK http://dx.doi.org/10.1063/1.1301824
  65.  Z. Li, S. Xui, Y. Xie, Y. Yu, C. Wang, I. Xing, Q. Pan, Q. Hu, S. Li, H. Chen and T. Zhang, Eur. Phys. J. A, 1999, 5, (4), 351 LINK http://dx.doi.org/ 10.1007/s100500050295
  66.  T. A. Doron and W. A. Lanford, J. Inorg. Nucl. Chem., 1972, 34, (2), 443 LINK http://dx.doi.org/10.1016/0022-1902(72)80421-4
  67.  D. L. Mock, R. C. Waddell, L. W. Fagg and R. A. Tobin, Phys. Rev., 1948, 74, (10), 1536 LINK http://dx.doi.org/10.1103/PhysRev.74.1536
  68.  L. E. Glendenin, National Nuclear Energy Series, Division IV, Plutonium Project Report M-CN-2184, September1944, p.11
  69.  L. E. Glendenin, Paper 115: ‘Short-Lived Ruthenium-Rhodium Decay Chains’, in “Radiochemical Studies: The Fission Products”, eds. C. D. Coryell and N. Sugarman, Vol. 3, National Nuclear Energy Series, Plutonium Project Record, Division IV, Vol. 9, McGraw-Hill, New York, USA, 1951, p. 849 LINK http://dx.doi.org/10.1016/0020-1650(75)80113-9
  70.  G. Franz and G. Herrmann, Inorg. Nucl. Chem. Lett., 1975, 11, (12), 857
  71.  N. Kaffrell, P. Hill, J. Rogowski, H. Tetzlaff, N. Trautmann, E. Jacobs, P. De Gelder, D. De Prenne, K. Heyde, S. Börjesson, G. Skarnemark, S. Alstad, N. Blasi, N. M. Harakeh, A. W. Sterrenburg and K. Wolfsberg, Nucl. Phys. A, 1987, 470, (1), 141 LINK http://dx.doi.org/10.1016/0375-9474(87)90125-4
  72.  F. Montes, A. Estrade, P. T. Hosmer, S. N. Liddick, P. F. Mantica, A. C. Morton, W. F. Mueller, M. Ouellette, E. Pellegrini, P. Santi, H. Schatz, A. Stolz, B. E. Tomlin, O. Arndt, K.-L. Kratz, B. Pfeiffer, P. Reeder, W. B. Walters, A. Aprahamian and A. Wöhr, Phys. Rev. C, 2006, 73, (3), 035801 (9 pages) LINK http://dx.doi.org/10.1103/PhysRevC.73.035801
  73.  T. Ohnishi, T. Kubo, K. Kusaka, A. Yoshida, K. Yoshida, N. Fukuda, M. Ohtake, Y. Yanagisawa, H. Takeda, D. Kameda, Y. Yamaguchi, N. Aoi, K.-I. Yoneda, H. Otsu, S. Takeuchi, T. Sugimoto, Y. Kondo, H. Scheit, Y. Gono, H. Sakurai, T. Motobayashi, H. Suzuki, T. Nakao, H. Kimura, Y. Mizoi, M. Matsushita, K. Ieka, T. Kuboki, T. Yamaguchi, T. Suzuki, A. Ozawa, T. Moriguchi, Y. Yasuda, T. Nakamura, T. Nannichi, T. Shimamura, Y. Nakayama, H. Geissel, H. Weick, J. A. Nolen, O. B. Tarasov, A. S. Nettleton, D. P. Bazin, B. M. Sherrill, D. J. Morrissey and W. Mittig, J. Phys. Soc. Jpn., 2008, 77, (8), 083201 (4 pages) LINK http://dx.doi.org/10.1143/JPSJ.77.083201
  74.  R. D. Page, L. Bianco, I. G. Darby, D. T. Joss, J. Simpson, J. S. Al-Khalili, A. J. Cannon, R. J. Cooper, S. Eeckhaudt, S. Ertürk, B. Gall, T. Grahn, P. T. Greenlees, B. Hadinia, P. M. Jones, D. S. Judson, R. Julin, S. Juutinen, S. Ketelhut, M. Labiche, M. Leino, A.-P. Leppänen, M. Nyman, D. O'Donnell, P. Rahkila, P. J. Sapple, J. Sarén, C. Scholey, A. N. Steer, P. D. Stevenson, E. B. Suckling, J. Thomson, J. Uusitalo and M. Venhart, ‘Decays of New Nuclides and Isomers Beyond the Proton Drip Line–The Influence of Neutron Configurations’, Nuclear Physics and Astrophysics: From Stable Beams to Exotic Nuclei, Cappadocia, Turkey, 25th–30th June, 2008, in “AIP Conference Proceedings”, eds. I. Boztosun and A. B. Balantekin, American Institute of Physics, New York, USA, 2008, Vol. 1072, pp. 172–178 LINK http://dx.doi.org/10.1063/1.3039824
  75.  Zs. Podolyák, M. Caamaño, P. H. Regan, P. M. Walker, P. Mayet, J. Gerl, Ch. Schlegel, M. Hellström, M. Mineva and M. Pfützner, Prog. Theor. Phys., 2002, Suppl. 146, 467 LINK http://dx.doi.org/10.1143/PTPS.146.467
  76.  Y. Xu, W. Yang, S. Yuan, Y. Xiao, X. Zhou and J. He, J. Radioanal. Nucl. Chem., 2003, 258, (2), 439 LINK http://dx.doi.org/10.1023/A:1026274813313
  77.  T. Kurtukian-Nieto, J. Benlliure, K.-H. Schmidt, L. Audouin, F. Becker, B. Blank, E. Casarejos, D. Cortina-Gil, M. Fernandez-Ordoñez, J. Giovinazzo, D. Henzlova, B. Jurado, J. Pereira, F. Rejmund and O. Yordanov, ‘Progress in the Investigation of Nuclei Approaching the R-Process Waiting Point A = 195’, International Symposium on Nuclear Astrophysics – Nuclei in the Cosmos–IX, CERN, Geneva, Switzerland, 25th–30th June, 2006, eds. A. Mengoni, J. Cederkall, J. D'Auria, L. Fraile, H. Fybo, M. Hass, M. M. Jeanne, M. Hjorth Jensen, F. Kaeppeler, K.-L. Kratz, M. Lindroos, M. Menna, G. Meynet and K. Riisager, Proceedings of Science, 2006, PoS (NIC-IX) 008, pp. 1–7 LINK http://pos.sissa.it/archive/conferences/028/008/NIC-IX_008.pdf
  78.  T. Kurtukian-Nieto, ‘Production and β Decay Half-Lives of Heavy Neutron-Rich Nuclei Approaching the Stellar Nucleosynthesis R-Process Path Around A = 195’, PhD Thesis, University of Santiago De Compostela, Santiago De Compostela, Spain, 2007 LINK http://fpsalmon.usc.es/PhDthesis/PhD_teresa.pdf
  79.  T. Kurtukian-Nieto, J. Benlliure, K.-H. Schmidt, E. Casarejos, D. Cortina-Gil, M. Fernandez-Ordoñez, J. Pereira, L. Audouin, B. Blank, F. Becker, J. Giovinazzo, D. Henzlova, B. Jurado, F. Rejmund and O. Yordanov, ‘Production and Half-Lives of Neutron-Rich Isotopes Near N = 126’, Exotic Nuclear Systems: International Symposium on Exotic Nuclear Systems, Debrecen, Hungary, 20th–25th June, 2005, “AIP Conference Proceedings”, eds. Z. Gácsi, Zs. Dombrádi and A. Krasznahorkay, American Institute of Physics, New York, USA, 2005, Vol. 802, pp. 73–76 LINK http://dx.doi.org/10.1063/1.2140628
  80.  H. Alvarez-Pol, J. Benlliure, E. Casarejos, L. Audouin, D. Cortina-Gil, T. Enqvist, B. Fernández-Domínguez, A. R. Junghans, B. Jurado, P. Napolitani, J. Pereira, F. Rejmund, K.-H. Schmidt and O. Yordanov, Phys. Rev. C, 2010, 82, (4), 041602 (5 pages) LINK http://dx.doi.org/10.1103/PhysRevC.82.041602
  81.  A. I. Morales, J. Benlliure, P. H. Regan, Z. Podolyák, M. Górska, N. Alkhomashi, S. Pietri, R. Kumar, E. Casarejos, J. Agramunt, A. Algora, H. Álvarez-Pol, G. Benzoni, A. Blazhev, P. Boutachkov, A. M. Bruce, L. S. Cáceres, I. J. Cullen, A. M. Denis Bacelar, P. Doornenbal, D. Dragosavac, M. E. Estévez, G. Farrelly, Y. Fujita, A. B. Garnsworthy, W. Gelletly, J. Gerl, J. Grębosz, R. Hoischen, I. Kojouharov, N. Kurz, S. Lalkovski, Z. Liu, D. Pérez-Loureiro, W. Prokopowicz, C. Mihai, F. Molina, D. Mücher, B. Rubio, H. Schaffner, S. J. Steer, A. Tamii, S. Tashenov, J. J. Valiente Dobón, S. Verma, P. M. Walker, H. J. Wollersheim and P. J. Woods, Acta Phys. Pol. B, 2009, 40, (3), 867 LINK http://th-www.if.uj.edu.pl/acta/vol40/pdf/v40p0867.pdf
  82.  J. Benlliure, H. Alvarez-Pol, T. Kurtukian-Nieto, K.-H. Schmidt, L. Audouin, B. Blank, F. Becker, E. Casarejos, D. Cortina-Gil, T. Enqvist, B. Fernández, M. Fernandez-Ordóñez, J. Giovinazzo, D. Henzlova, A. R. Junghans, B. Jurado, P. Napolitani, J. Pereira, F. Rejmund and O. Yordanov, Preprint arXiv:1004.0265v1 [nucl-ex], 2nd April, 2010 LINK http://arxiv.org/abs/1004.0265
  83.  M. Thoennessen, Rep. Prog. Phys., 2004, 67, (7), 1187 LINK http://dx.doi.org/10.1088/0034-4885/67/7/R04
  84.  M. Thoennessen and B. Sherrill, Nature, 2011, 473, (7345), 25 LINK http://dx.doi.org/10.1038/473025a

The Author

John W. Arblaster is interested in the history of science and the evaluation of the thermodynamic and crystallographic properties of the elements. Now retired, he previously worked as a metallurgical chemist in a number of commercial laboratories and was involved in the analysis of a wide range of ferrous and non-ferrous alloys.

BACK TO TOP