“Heterogenized Homogeneous Catalysts for Fine Chemicals Production: Materials and Processes”

Reviewed by Raghunath V. Chaudhari
The Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, KS 66047, USA
Email: rvc1948@ku.edu

Introduction
“Heterogenized Homogeneous Catalysts for Fine Chemicals Production” is Volume 33 of the series “Catalysis by Metal Complexes”, edited by Claudia Bianchini (Institute of Chemistry of Organometallic Compounds, Sesto Fiorentino, Italy), David J. Cole-Hamilton (University of St Andrews, UK) and Piet W. N. M. van Leeuwen (Institute of Chemical Research of Catalonia, Tarragona, Spain). One of the book’s co-editors, Pierluigi Barbaro, is a permanent researcher at Instituto di Chimica dei Composti Organo Metallici (ICCOM), Firenze, Italy, and has research interests in homogeneous and asymmetric catalysis with a focus on supported and nanostructured catalysts for sustainable production processes. The other co-editor, Francesca Liguori, is also at ICCOM and specialises in the chemistry of heterocycles and carbohydrates, organometallic chemistry and the synthesis of heterogenised homogeneous catalysts.

There are 13 chapters by a total of 29 authors, with many years of research experience and expertise in their respective fields. Most of the contributors are from academic institutions or universities, with just one chapter by authors from an industrial background.

The aim of this book is to review the current state of the art on the ‘heterogenisation’ (or ‘immobilisation’) of homogeneous catalysts for fine chemicals production, low to medium volume high-value products which are often difficult to separate and purify by conventional techniques such as distillation or extraction. Heterogenisation is a useful technique for developing advanced technologies and green chemical synthesis, as is pointed out in the foreword by David J. Cole-Hamilton and in the introduction to Chapter 1, written by Duncan Macquarrie (University of York, UK).

A number of examples of heterogenised catalytic complexes involving different transition metals are...
given, but this review will focus on the platinum group metals (pgms). These are grouped by topic. 10 out of
the 13 chapters include pgm examples, with the most
commonly used metals being ruthenium, rhodium
and palladium, although platinum- and iridium-based
catalysts are also mentioned.

The topics covered are: the synthesis of ‘hetero-
genised’ catalysts; asymmetric catalysis; oxidation
reactions; polymerisation reactions; reaction engi-
neering; and instrumental techniques for the charac-
terisation of catalytic materials. The design and
development of ‘heterogenised’ catalysts is of great
practical significance as it has implications for catalyst–
product separation, recycling and the efficient use
of pgm catalysts.

Synthesis Methods for Heterogenised
Catalysts

The synthesis of ‘heterogenised’ catalysts is reviewed
in 8 out of the book’s 13 chapters. Chapters 2–5 are
mainly focused on catalyst preparation, with some
illustrative examples of model reaction systems. Chap-
ters 3–5 describe catalysts based on pgms, mainly Pd,
Rh and Ru with a few Pt catalysts. Chapter 2, by David
Xuereb et al. (University of Southampton, UK), intro-
duces biomimetic single site heterogeneous catalysts
consisting of non-pgms, although the approach may
also be useful for pgm catalysts.

Chapter 3 by José Fraile et al. (Universidad de
Zaragoza, Spain) presents a very comprehensive
review of synthesis methods and applications for
heterogenised catalysts, mainly focusing on the use
of inorganic supports such as silica, alumina, mixed
metal oxides, layered solids (clays and layered double
hydroxides), crystalline solids (zeolites including
mesoporous materials) and nanoparticles, for exam-
ple gold nanoparticles and carbon nanotubes. The
importance of inorganic supports and their structural
properties for the development of heterogenised
homogeneous catalysts is highlighted with a number
of examples. The chapter starts with a general over-
view of the different materials that have been used
classically for immobilisation of metal complex cata-
lysts, followed by the introduction of some new sup-
ports consisting of metal oxide nanoparticles, carbon
nanotubes, graphite materials and composite matrices.
The chapter is well divided into sections with dif-
ferent solid catalysts categorised according to the type
of interaction between the support and the active
catalyst, for example, support–metal or support–
ligand interactions. Synthetic strategies, characteri-
sation techniques and applications for several
immobilised pgm and other transition metal complex
catalysts are reviewed. The influence of the nature of
the support matrices and other conditions are also
discussed. Several newer strategies are described,
including the silylation of oligo(methylsilane) (OMS)
materials to build encapsulated complex catalysts
within large mesoporous cages, previously thought
possible only with microporous matrices. Concepts
such as immobilisation by adsorption and supported
liquid phase catalysis (SLPC) are also discussed in
detail with several applications showing prospective
research directions for fine chemical applications.
Several novel Rh-, Ru- and Pd-based catalysts with uses
in fine chemicals are included. For example, hydro-
genation of (Z)-N-acetamidocinnamic acid deriva-
tives using Rh complexes with proline derived ligand
on ultrastable Y (USY) zeolite (Figure 1).

In Chapter 4, an extensive review of the synthesis of
immobilised asymmetric catalysts on polymers and
nanoparticle supports is presented by Ciril Jimeno
et al. (Institute of Chemical Research of Catalonia
(ICIQ), Spain). The catalytic performance of a selec-
tion of Pd, Rh and Ru complexes with immobilised
ligands is compared for a range of reactions. An

Fig. 1. Immobilisation of rhodium complexes with proline derived ligand on USY zeolite
interesting new approach using functional nanoparticles such as gold and magnetic iron(II, III) oxide (Fe$_3$O$_4$) as supports for the immobilisation of pgm complexes is presented, which may lead to wider applications. This chapter will help researchers to identify different materials for the innovative and rational design of improved immobilised catalysts.

Chapter 5 reviews the immobilisation of metal complex catalysts on dendrimer supports. These large molecules enable easy separation of the supported catalyst complex by membrane filtration. The design of dendrimers with different functionalisation on the periphery and at the core has opened new horizons for immobilisation using several different functional moieties in a single structure. The synthesis and applications of these materials for epoxidation, coupling and hydrosilylation reactions is well presented in this chapter and there is scope for expansion into other fine chemicals applications. Examples of dendrimer supported pgm complexes include:

(a) A dendrimer supported [Rh(nbd)$_2$](ClO$_4$) (nbd = 2,5-norbornadiene) complex for the asymmetric hydrogenation of dimethyl itaconate, which gives high activity, enantioselectivity and stability; and

(b) The asymmetric transfer hydrogenation of acetophenone using [RuCl$_2$(p-cymene)]$_2$ immobilised on a core-functionalised dendrimeric ligand (Figure 2).

In Chapter 6, the preparation and application of membranes for the separation of catalysts is addressed. Although this chapter mainly gives non-pgm examples, the approach is generic and has scope for expansion to pgm-catalysed reactions.

Applications to Fine Chemicals and Speciality Polymers

Asymmetric Catalysis by Heterogenised Chiral Metal Complexes

Chapter 7 by Benoît Pugin and Hans-Ulrich Blaser (Solvias AG, Switzerland) is an important contribution addressing industrial aspects of fine chemicals production with examples of commercialised processes. The authors have extensive experience in the industrialisation of asymmetric catalytic processes. They give examples of industrial enantioselective catalysis using a number of immobilised pgm catalysts which include:

(a) [Ir(COD)Cl]$_2$ on chiral Josiphos (a proprietary ligand from Solvias AG) immobilised on functionalised silica on polystyrene supports (Figure 3) for the manufacture of a herbicide, (S)-metolachlor, which is produced at >20,000 tonnes per year; and

(b) Rh diphosphine and Ru-BIPHEP (2,2′-bis(diphenylphosphino)-1,1′-biphenyl) immobilised on silica for asymmetric hydrogenation reactions.
This chapter is unique in this book with a brief but useful discussion of practical aspects such as catalyst reuse, availability, development time, costs and opportunities for process engineering, which are often difficult to accomplish with immobilised catalysts. It is also the only chapter written by authors working in industrial research and development. It is evident from the references that a more detailed version of the issues addressed in this chapter is available in another book coedited by Hans-Ulrich Blaser (1).

Chapter 9 by Agnes Zsigmond et al. (University of Szeged, Hungary) provides a very well written and comprehensive review of the chemoselective and enantioselective hydrogenation of alkenes, aldehydes, diketones and imines using a number of immobilised pgm catalysts, which include some chiral complexes. Different aspects of strategic catalyst design and synthesis are described, including characterisation, applications, recyclability and stability aspects, involving mostly Ru- or Rh-based catalysts. The historical development of industrial technology for enantioselective hydrogenation reactions is reviewed. Topics such as polymer bound and inorganic solid supported Ru or Rh complexes are thoroughly discussed, with emphasis on stability and recyclability. The chapter also includes recent strategies involving the use of designed ionic liquids and/or multiphasic liquid systems, envisioning lower catalyst loss and better recyclability, activity and selectivity. A specific example of the heterogenisation of a Ru-BINAP (2,2’-bis(diphenylphosphino)-1,1’-binaphthyl) catalyst via a spacer is shown (Figure 4).

Oxidation Reactions
Chapter 10 summarises a selection of Ru- and Pd-based heterogenised catalysts for oxidation reactions. However, there is limited information about the synthesis and structural characterisation of the complexes. The initial part of the chapter sums up general methodologies to immobilise metal complex catalysts, and there is a good selection of references on oxidation reactions, although there is a much broader spectrum of exciting applications of oxidation in fine chemicals which is not covered here.

Polymerisation Reactions
In Chapter 11, polymerisation reactions using novel immobilised Ru catalysts are reviewed by Matthew D. Jones (University of Bath, UK) with applications in specialty polymers although these are not strictly...
defined as fine chemicals. Immobilising metal complex polymerisation catalysts is a useful strategy for the development of more sustainable processes and ‘green technology’. Special emphasis is placed on polymer degradation; the proposed single site catalysts are particularly useful for synthesis of specialty polymers with biodegradable properties, which is significant to the goal of sustainable and green technology. One example of a major breakthrough is the heterogenised Grubb’s catalyst (a Ru complex on a silica support) for olefin metathesis (Figure 5) which has insignificant leaching. Other examples discussed in this chapter relate to non-pgm catalysts.

Reaction Engineering and Instrumental Techniques

In Chapter 8, Albert Renken (École polytechnique fédérale de Lausanne, Institute of Chemical Sciences and Engineering (EPFL-ISIC), Lausanne, Switzerland) presents an excellent overview of reaction engineering involving heterogenised molecular catalysts, which is useful as an introduction to the subject for chemists and engineers working in this area who are not familiar with the fundamentals of reactor design. The well developed concepts of mass transfer coupled with chemical reactions are described in the context of heterogenised catalytic systems, which generally fall into the class of multiphase catalytic reactions. A selection of relevant examples such as biphasic hydroformylation catalysed by a water soluble Rh complex with triphenylphosphine trisulfonate (TPPTS) ligand, and SLPC reactions catalysed by RhCl(CO)(PPh₃)₃ dissolved in dioctyl phthalate containing free PPh₃ supported in porous materials are given. The article also provides a very useful reference source for reaction engineering concepts. In Chapter 12, a brief but essential introduction of molecular simulation is presented which is very timely for understanding molecular interactions in heterogenised catalysts.

Chapter 13 by John Evans and Moniek Tromp (University of Southampton, UK) is a very general introduction to the characterisation of catalytic materials by spectroscopic methods. The characterisation of Pd, Rh, Os and Ru catalysts are described, and the chapter will be useful as a reference source. However the coverage of different techniques is limited, considering the vast progress made in this area in recent years.

Conclusions

This book presents a comprehensive review of recent developments in the ‘heterogenisation’ of metal complex catalysts with a focus on synthetic methodology, characterisation and applications in fine chemicals. Many different synthetic approaches are covered, although most of the examples are illustrative rather than real processes used in the fine chemicals industry. It is, however, evident from this book that the pgms have wide ranging applications in fine chemicals and emerging technologies.

The chapters in this book are well written by highly qualified authors and will provide an excellent resource for postgraduate and doctoral students as well as researchers working in the areas of metal complex catalysis, asymmetric catalysis and catalytic process development. A number of known applications using heterogenised metal complex catalysts in commercially relevant hydroformylation, carbonylation and oxidation reactions are not adequately covered (see also (2–8)) and more comparison of the performances of heterogenised catalysts and their homogeneous counterparts would also have been of value.

Overall, the book reads well and covers a subject of interest to both academic and industrial researchers. It should inspire many young researchers to develop novel catalytic materials and make progress towards more sustainable and green chemical processes.
References

The Reviewer

Raghunath V. Chaudhari is the Deane E. Ackers Distinguished Professor at the Department of Chemical and Petroleum Engineering, University of Kansas (KU), Lawrence, USA. He worked at the National Chemical Laboratory, Pune, India, for 30 years as Head, Homogeneous Catalysis Division before joining KU in 2007. His research experience covers interdisciplinary fields of homogeneous and heterogeneous catalysis, chemical reaction engineering and modelling of multiphase systems with current activities focused on biomass conversion processes and the design and development of novel catalytic materials. He has authored or co-authored a number of research papers, review articles and two books, the most recent one being on "Trickle Bed Reactors", published in 2011 by Elsevier. He also teaches kinetics, reaction engineering and chemical engineering thermodynamics at graduate and undergraduate levels at KU.