Advanced Search
RSS LinkedIn Twitter

Journal Archive

Johnson Matthey Technol. Rev., 2020, 64, (1), 84

doi:10.1595/205651320x15753791710082

铂族元素同位素发现者:2020年更新

新的铂同位素被发现

自2018年发表评论 (1) 以来,又有一种新的质量为165的铂元素轻质同位素 (2) 和四种新的质量为209至212的铂元素重质同位素 (3) 被发现(见表I)。就重质同位素而言,只能确定其具有“粒子稳定”的特征,即对质子或中子衰变具有抵抗力,但是,据推断所有这些同位素都会发生β衰变。当原子核中的中子衰变为一个质子时,会释放出一个电子和一个反电子中微子,所以子体同位素的质量数保持不变,但原子序数会增加1。轻质同位素会发生α衰变,放射出四价氦离子,这表示子体同位素的质量比母体同位素减少4,原子序数减少2。根据文献参考值 0.26 (−0.09 +0.26)ms,这些同位素的半衰期应为 0.4 ± 0.2 ms。

The Discoverers of the Isotopes of the Platinum Group of Elements: Update 2020

New isotopes found for Pt

SHARE THIS PAGE:

Since the 2018 review (1) one new light isotope of mass 165 (2) and four new heavy isotopes of masses 209 to 212 (3) have been identified for platinum (Table I). The heavy isotopes are only identified as being ‘particle stable’ – that is resistant to proton or neutron decay but all are expected to decay by beta decay in which an electron and anti-electron neutrino are emitted when a neutron in the nucleus decays to a proton, so that the mass number of the daughter isotope remains the same but the atomic number is increased by one. The light isotope decays by alpha decay in which the emittance of a helium four ion means that the daughter isotope mass is four lower than the original parent isotope whilst the atomic number is reduced by two. The half-life is 0.4 ± 0.2 ms normalised from the reported value of 0.26 (−0.09 +0.26) ms.

Table I

New Isotopes of Platinum Reported from 2018 to 2020

Element Mass number Year of discovery Discoverers Reference
Pt 165 2019 Hilton et al. (2)
Pt 209 2018 Zhang et al. (3)
Pt 210 2018 Zhang et al. (3)
Pt 211 2018 Zhang et al. (3)
Pt 212 2018 Zhang et al. (3)
Table II

Total Number of Isotopes and Mass Ranges for Each Platinum Group Element to 2020

Element Number of known isotopes Mass number range
Ru 41 85–125
Rh 40 89–128
Pd 42 90–131
Os 43 161–203
Ir 42 164–205
Pt 48 165–212

BACK TO TOP

References

  1. 1.
    J. W. Arblaster, Johnson Matthey Technol. Rev., 2018, 62, (3), 291 LINK https://www.technology.matthey.com/article/62/3/291-292/
  2. 2.
    J. Hilton, J. Uusitalo, J. Sarén, R. D. Page, D. T. Joss, M. A. M. AlAgeel, H. Badran, A. D. Briscoe, T. Calverley, D. M. Cox, T. Grahn, A. Gredley, P. T. Greenlees, R. Harding, A. Herzan, E. Higgins, R. Julin, S. Juutinen, J. Konki, M. Labiche, M. Leino, M. C. Lewis, J. Ojala, J. Pakarinen, P. Papadakis, J. Partanen, P. Rahkila, P. Ruotsalainen, M. Sandzelius, C. Scholey, J. Sorri, L. Sottili, S. Stolze and F. Wearing, Phys. Rev. C, 2019, 100, (1), 014305 LINK https://doi.org/10.1103/PhysRevC.100.014305
  3. 3.
    G. Zhang, C. Li, P.-W. Wen, J.-J. Li, X.-X. Xu, B. Li, Z. Liu and F.-S. Zhang, Phys. Rev. C, 2018, 98, (1), 014613 LINK https://doi.org/10.1103/PhysRevC.98.014613
 

The Author


John W. Arblaster is interested in the history of science and the evaluation of the thermodynamic and crystallographic properties of the elements. Now retired, he previously worked as a metallurgical chemist in a number of commercial laboratories and was involved in the analysis of a wide range of ferrous and non-ferrous alloys.

Read more from this issue »

BACK TO TOP

SHARE THIS PAGE: