sufficiently high—above about 600 atmospheres at 700°C and 1000 atmospheres at 800°C. It is black, relatively stable and completely insoluble in mineral acid mixtures and it would be of interest to know more of its properties—particularly in the field of its catalytic activity.

At intermediate pressures, Pt₃O₄ is the stable oxide. For its preparation in bulk it is suggested that commercial platinum black or fine mesh platinum powder should be heated to 850°C under 200 to 300 atmospheres of oxygen and any unreacted platinum removed by treatment with aqua regia. Its structure appears to be identical with that of Na₂Pt₃O₄, the implication being that removal of the sodium atoms leaves empty positions in the lattice.

The work on the Rh-O system described by the authors is less extensive but is remarkable as indicating RhO₂₃, a phase not previously described, as the most stable structure. It is easily prepared by heating Rh₂O₃, 5H₂O at 700 to 850°C at high pressures of oxygen. It is shown to be stable at all temperatures up to about 1000°C at oxygen pressures above about 20 atmospheres and it is, moreover, the stable phase at atmospheric temperatures below about 700°C. It is a black compound, highly insoluble even in hot aqua regia, and obviously deserves further study. The two other oxide phases, both forms of Rh₄O₉₃, have relatively narrow fields of existence at 650 to 900°C and above 950°C respectively.

The interests of the authors as shown by this paper lie in the interpretation of the X-ray data on their samples. The methods of preparation chosen may, however, be of value in a much wider field. High pressure techniques may well help to resolve many outstanding problems of platinum metal chemistry by stabilising transient reactions which otherwise elude study.

Reference


Mechanism of the Catalytic Oxidation of Ammonia

The oxidation of ammonia to nitric oxide catalysed by platinum and its alloys forms an essential step in the manufacture of nitric acid, but, because of the high temperature and high space velocity at which the process operates academic investigation of the reaction has only been rarely attempted, and our detailed knowledge of the elementary steps which constitute the total process is very slender. Doubt has often been expressed as to whether the reaction is or is not entirely heterogeneous, and free radical reactions in the gas phase have often been thought to take place, particularly in the formation of nitrogen.

A recent short paper by C. W. Nutt and S. Kapur of the Department of Chemical Engineering, University of Birmingham (Nature, 1968, 220, 697) throws considerable light on the reaction mechanism. These authors examined the reaction in a mass spectrometer by causing an ammonia/oxygen mixture to contact a heated platinum filament; the reaction products passed under collision-free conditions through molecular beam apertures and thence through an ion source. The ionised products were detected in the usual way.

This technique ensures that only those species actually formed on the catalyst surface are sensed; because of the low background pressure, secondary products which might result from gas-phase collisions do not obtrude.

The reaction was examined with filament temperatures between about 400 and 1600 K. The results are very clear: both nitric oxide and nitrogen are formed on the catalyst surface and cannot arise from secondary processes. The reaction starts at about 500 K, the nitrogen yield is maximum at 700 K and nitric oxide at about 850 K. It is suggested that the rate decreases above this temperature because the residence time of the adsorbed species becomes progressively shorter.

G. C. B.

Platinum Metals Rev., 1969, 13, (1) 29