This article is an accepted manuscript

It has been peer reviewed and accepted for publication but has not yet been copyedited, house styled, proofread or typeset. The final published version may contain differences as a result of the above procedures.

It will be published in the **JANUARY 2022** issue of the *Johnson Matthey Technology Review*

Please visit the website https://www.technology.matthey.com/ for Open Access to the article and the full issue once published.

Editorial team

Manager Dan Carter
Editor Sara Coles
Editorial Assistant Yasmin Stephens
Senior Information Officer Elisabeth Riley

Johnson Matthey Technology Review
Johnson Matthey Plc
Orchard Road
Royston
SG8 5HE
UK
Tel +44 (0)1763 253 000
Email tech.review@matthey.com
Adsorption of Transition Metal Catalysts on Carbon Supports: A Theoretical Perspective

Arunabhiram Chutia*

School of Chemistry, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
*Email: achutia@lincoln.ac.uk

ABSTRACT

Adsorption is a fundamental process, which takes place on a catalyst surface before it dissociates, diffuses over the surface and recombines with other adsorbed species to form the final product. Therefore, in theoretical chemistry understanding of the local geometrical and electronic properties of the adsorbed species on the catalyst surface has been a topic of core focus. In this short review we briefly summarise some of the important developments on theoretical studies related to the adsorption properties of transition metal catalysts on graphene and graphene-related carbon materials. Prior to this, we will present a discussion on various forms of carbon materials used as catalyst supports, which will be followed by a brief discussion of the fundamentals of the density functional theory.
1. Introduction

As early as 1834 Michael Faraday performed some of the original studies on adsorption, which is a fundamental surface phenomenon involving the interaction of atoms and molecules from vapour phases or a solution, onto the surfaces and pores of solids (1). It is now well-known that adsorption can be either physisorption (also referred as van der Waals adsorption or physical adsorption) or chemisorption. In physisorption, as the name suggests, the weak physical van der Waals forces are involved, and the heat evolved during this process is usually very small. Chemisorption on the other hand, first studied by Irving Langmuir in 1916, occurs due to the formation of chemical bonds between the adsorbate and adsorbent and the heat evolved during this process is significantly higher (in the range of 100 – 500 kJ/mol). So far numerous theoretical studies have been performed to understand the adsorption properties of atoms, clusters and molecules on catalyst surfaces (2) (3–14). However, in this short review we will focus only on the density functional theory (DFT) based studies on the adsorption properties of transition metal catalysts on graphene and discuss the future of similar studies on amorphous carbon materials where graphene is the basic structural unit. First, we will present a brief summary of the physical and chemical features of various carbon materials widely used as catalyst supports, which will be followed by a brief discussion on DFT.

1.1. Graphite and graphene

The word graphene refers to a single atomic plane of graphite and the word graphite has its origin in the Greek word “Гραφεῖν” (pronounced as graphein), which means to draw or to write.(15) Graphite is one of the first known materials to be studied using
X-ray diffraction by A. W. Hull in 1917(16). He proposed that the normal structure of graphite has hexagonal D_{6h} symmetry (16). Later this structure was confirmed by J. D. Bernal and O. Hessel and Z. H. Mark in 1924(17)-(18). According to their model of graphite, it consists of a stack of parallel hexagonal net planes of carbon atoms with C-C bond length of 1.42 Å and these net planes are separated by a distance of 3.35 Å and the unit cell contains four atoms in a planar stacking sequence ABABA... However, later reports based on X-ray spectroscopy accounted for these hexagonal planes being stacked in ABCABC ... sequence (19)(20)(21)(22)(23)(24). These reports revealed that in ordinary temperatures and pressures natural graphite occurs in two crystal structures (a) Bernal with an ABABA ... sequence of arrangements and (b) rhombohedral with an ABCABC... sequence of arrangements(25).

During the early period of research on graphite, many studies on its physical properties were also reported. For example, in 1915 G. E. Washburn measured the electrical resistance parallel to the basal plane of a perfect sample approximating to single crystals or highly oriented polycrystalline samples (26). Similar reports on electrical resistance measurements were reported by Ryschkewitsch in 1923 (27). Measurements related to the temperature-dependence of the electrical resistance parallel to the layers, were made by D. E. Roberts in 1913 and W. Meissner, H. Franz and H. Westerhof in 1932. In these reports the resistivity was found in the range of $4-8 \times 10^{-5}$ ohm-cm. Later, G. E. Washburn and N. Ganguli and K. S. Krishnan reported that the resistivity perpendicular to the basal plane was $10^2 - 10^3$ times greater than that of the parallel planes (28). Simultaneous theoretical studies to explore the
electronic structure of graphite were also carried out. The first known energy band structure of graphite crystal was studied as early as 1935 by Hund and Mrowka (29). However, the first known theoretical calculations with an attempt to relate them to properties such as electrical conductivity of graphite were made by Wallace and Coulson in 1947 (30)(31). Wallace employed “tight-binding” approximation to develop the electronic energy bands and Brillouin zones of graphite (32).

In addition to the investigations on the structural, physical and electronic properties, the history of studies on the chemical properties of graphite such as the reaction of graphite with gases, particularly oxygen and carbon dioxide in presence of catalysts was also reported, but the use of graphite as catalyst support was seen much later (33). For example, Brownlie et al. used graphite as a catalyst support to investigate how properties of metals are influenced by its interaction with the surface (32). Under standard temperatures and pressures, graphite is the most stable allotrope of carbon but due to its low surface area it was used very little as catalyst support (34).

In recent years however, many studies on the use of expanded graphite as catalyst supports have been reported (34)-(35). We note that a modified graphite having an enlarged interlayer lattice distance of 4.3Å, and has a long-range-order layered structure of graphite is referred to as expanded graphite (36). For example, Chen et al recently showed that PtCo nanoparticles supported on expanded graphite have higher electrocatalytic activity and antipoisoning ability and long-term stability for methanol oxidation (35). The expanded graphite also finds its application in fuel cell electrode material due to its good electrical and thermal conductivity, chemical stability

Johnson Matthey Technol. Rev., 2022, **66**, (1), xxx-yyyy
https://doi.org/10.1595/205651322X16212512135401
and excellent mechanical properties (37). Other interesting experimental studies have been also reported on the use of graphite nanoplatelets (38).

Recently, Novoselov et al reported the isolation of graphene by employing the technique of micromechanical cleavage, which involves mechanical exfoliation of small mesas of highly oriented pyrolitic graphite (39, 40). In recent years, the use of graphene as catalyst support has been also a topic of extensive research especially because of its interesting properties, which include excellent electronic and thermal conductivity, mechanical and thermal stability, and high surface area (as compared to graphite) (41, 42). However, in addition to the well-structured materials such as fullerene, carbon nanotubes, graphene and graphite there are many other forms of carbon material such as carbon black, graphite oxide, activated carbon, and carbon fibres in which graphene is the building block. These carbon materials have wide range of applications for example, carbon blacks find their use as catalyst supports in fuel cells, in car tires, and as fillers in polymers used in conductive packaging for electronic components. Similarly, graphene oxide, activated carbon, carbon fibre also find their application in catalyst support (43–52). However, theoretical studies on structural and chemical properties of these amorphous carbons have not yet been done in greater detail. In the following sections a brief discussion on the structural and chemical properties of these amorphous graphene-related carbon materials is presented.

1.2. Carbon black

Since the early 1900s, several models of the internal structure of carbon blacks have been proposed and in this regard, the review paper by Donnet provides an excellent
overview of some of these models (53). One of the first models of carbon blacks was proposed by Railey, which was based on the X-ray studies that basically corresponded to the average structure of particles reflecting the random distribution of crystallites and it represented the organized part of the carbon black particles [Figure 1(a)]. The improved models were proposed by Bouland [Figure 1(b)] and Shultz [Figure 1(c)] in which the skin of the particle was believed to be more organized than its core. A more systematic model was proposed by Hekman [Figure 1(d)], which was based on the x-ray and electron microscopy. In this model the skin of the particle was also proposed to be better organized than its randomly arranged crystallites in the core. Later, on the basis of results obtained from lattice fringe imaging technique, a more detailed

*Figure 1. Carbon black models proposed by (a) Riley, (b) Bouland, (c) Shultz and (d) Hekman [Ref. J. B. Donnet, *Carbon*, 1982, 20, (4), 267].*
structure of carbon black was proposed by Heidenreich, Hess and Ban (54). In this model, (Figure 2) they also proposed that the ordering of the crystallite size and their ordering towards the centre of the particle are less than on the surface. According to all these models the commercial carbon blacks are made up of crystallites which are on average four graphite layer planes. The layers are roughly parallel and equidistant but do not exhibit the ABA stacking of hexagonal graphite. These graphite layer planes are referred to as basic structural units (BSU). The distance between the layers in the BSUs are larger than 3.35 Å. The size of these BSUs in the plane can differ between a few and 20 Å – 30 Å. If the samples become more amorphous, the number of stacked layers decrease until only one layer is left and simultaneously, the number of condensed rings in the plane also decreases (55). Recently Jäger et al. reported that the carbon black samples condensed in 10 mbar and 100 mbar Ar gas atmosphere were similar to the Riley model as shown in Figure 1 (a) (55). They further reported that the samples produced by them at 100 mbar Ar were close to the paracrystalline model (see Figure 3) where

Figure 2. Model of carbon black based on lattice fringe imaging technique proposed by Heidenreich et al. [Ref. R. D. Heidenreich, W. M. Hess and L. L. Ban, J. Appl. Crystallogr., 1968, 1, (1), 1].
the curved and strongly distributed graphene layers are stacked together to form a particle.

In addition to the studies on the structural features of carbon black since the 1950s it is known that the surface of these particles have functional groups, which include hydroxyl, carboxyl, aldehydes, ketones, and quinones (53, 56, 57). Several researchers including Donnet et al., Garten et al, Studebaker et al, Puri et al and Boehm et al in the 1950s and 60s independently arrived at this conclusion (53, 58–62). Since then various spectroscopic studies have also led to similar conclusions. For example, the recent FTIR spectral studies by Juan et al have shown that in the carbon black structures there are lots of aromatic C–C bonds and a large amount of oxygen containing organic functional groups (63). Other recent studies by Pantea et al have shown that in addition to oxygen containing groups, sulphur containing groups may be also present (43, 64).

1.3. Graphite Oxide

Preparation of graphite oxide was first reported in 1850, which was obtained by oxidizing graphite with KClO₃/HNO₃ (65, 66). Since then several other preparation methods of graphite oxides have been established and some of the most widely known methods are by Brodie, Staudenmaier and Hummers and Offeman and all these methods use strong oxidising agents such as KClO₃, KMnO₄ with HNO₃ (67–69). While the preparation methods for graphite oxide are well established, its structural features are still not fully understood. In this regard, several models have been proposed, which include:

1. **Ruess model**: In this model it was proposed that there are tertiary hydroxyl groups and ether bridges at 1,3 positions (67, 69, 70).

2. **Hoffman model**: In this model, the graphite oxides have enol- and keto-type functional groups with hydroxyls and ether bridges at the 1,3 positions (67, 70).

3. The Stuart and Briegleb model: In this model the graphite oxides are proposed to have carbonyl, hydroxyl and carbon-carbon double bonds (67, 69).

![Graphite oxide model as proposed by Lee et al.](https://doi.org/10.1595/205651322X16212512135401)
In another study, Lerf et al employed 13C and 1H NMR techniques to propose a newer structural model of graphite oxide, which consists of two kinds of regions i.e., (a) aromatic regions with unoxidized benzene rings and (b) regions containing aliphatic six membered rings (71). In this model, the aromatic entities, double bonds and epoxide groups give rise to a nearly flat carbon grid and only the carbons attached to –OH groups are in a slightly distorted tetrahedral configuration, resulting in some wrinkling of the layers. It was further reported that the functional groups lie above and below the carbon grid forming a layer of oxygen atoms of variable concentration. Like graphite itself, graphite oxide has a layered structure, but its carbon layers contain large quantities of functional groups, mainly –OH and –CHO (72). We note that modifications of graphite oxide with soft donor atoms of sulphur have been also reported by Talanov et al (73). Further to this, recent studies on the graphite oxide structure, using various microscopy and spectroscopic techniques, proposed a new model of GO, which indicates the presence of –O–, –OH and –C=O groups on the surface. In these models, the two neighbouring –OH groups are located on opposite sites in order to reduce the electrostatic repulsions in between them and for the same reason the –OH groups are located away from each other. The epoxy and ketone groups are also away from the –OH groups (See Figure 4)(74). Additionally, the presence of five- and six-membered-ring lactols has also been proposed (75).

1.4. Activated Carbon

The surface structure of activated carbon is highly complex and depends on the raw material used, and method adopted for their production. It is believed that activated
carbon generally consists of graphite crystallites with highly disordered, irregular, rough and heterogeneous surfaces (76). There are many experimental studies, which have reported the surface chemistry of activated carbon and methods to evaluate it (77, 78). The infrared study on the surface structure of activated carbons has indicated the presence of oxygen-containing organic functional groups such as C=O in lactones and carboxylic anhydrides, quinine and aceto-enol groups and C-O group in ethers, lactones, phenols and carboxylic anhydrides (79). The structure of activated carbons is still not fully understood.

1.5. Carbon Fibres

Carbon fibres (CF) are generally in the range of 5–50 μm, which are commercially produced by converting a carbonaceous precursor into fibre. The Polyacrylonitrile-based (PAN-based) and mesophase pitch-based CFs are two of the most dominant CFs (80). Several studies have shown that the PAN-based CFs have extensively folded and interlinked tubostratic layers (i.e., the sheets of carbon are haphazardly folded and crumbled together) with interlayer spacing larger than those of graphite (80, 81). Mesophase pitch-based carbon fibres on the other hand may have radial (graphene planes radiating out from the centre of the fibre), random (with random orientation of graphitic planes) or onion or quasi-onion like transverse microstructures (80, 82). The mesophase-pitch based CFs usually have a larger diameter (10 – 15 μm) as compared to the PAN-based CFs (5 – 7 μm) (81). In addition to understanding the detailed structural features of carbon fibre there have also been numerous experimental studies on the characterisation of the surficial reactive functional groups in CFs (83–85). In
this regard, the studies by Szabó et al. showed that CFs consist of mainly –OH groups (~97%) and small amounts of –NH₂ (~2.7%) and –COOH (~0.3%) groups (85).

1.6. Soot

Finally, we briefly comment on the structural and chemical features of soot, as carbon black is sometimes confused with soot even though they are very different materials (86). While carbon blacks are made under closely controlled conditions, soot is produced as a byproduct of incomplete combustion of a hydrocarbon or pyrolysis (87, 88). The gas-phase soot contains polycyclic aromatic hydrocarbons (PAHs). It has been found that soot is made of spherical-like particles with diameters in the 20- to 50-nm range. These particles are composed of graphite-type microcrystallites layers which are concentrically arranged in an onionlike structure. The graphitic layers are found to contain surface OH and C=O groups (89).

2. A brief discussion on density functional theory

After having briefly reviewed the structural and chemical features of some interesting ordered and amorphous carbon materials, in the next section we present an outline of the density functional theory.

2.1. The Hohenberg-Kohn Theorem

In 1964, Pierre Hohenberg and Walter Kohn proposed and proved that for a nondegenerate ground state all the ground state electronic properties are determined
by the ground state electron density (ρ_0), which could be mathematically represented as:

$\rho_0(r) \rightarrow v_{\text{ext}} \rightarrow \Psi_0 \rightarrow \text{all properties}$ \hspace{1cm} [1]

Here, v_{ext} is the Coulomb potential energy between electrons and the nuclei, and Ψ_0 is a unique ground state wave function. The electron density is dependent only on three spatial variables (r) whereas, the wave function depends on $3N$ variables for a system of N electrons.

Thus, the ground state energy can be written as a functional of the ground state electron density,

$$E_0 = E_{v_{\text{ext}}}[\rho_0] = T[\rho_0] + V_{\text{ne}}[\rho_0] + V_{\text{ee}}[\rho_0].$$ \hspace{1cm} [2]

Here, T, V_{ne} and V_{ee} are the average kinetic energy, potential energy due to nucleus-electron and electron-electron interactions, respectively. The V_{ne} term in equation [2] can be further written as:

$$V_{\text{ne}} = \langle \psi_0 | \sum_{i=1}^{n} v(r_i) | \psi_0 \rangle = \int \rho_0(r) v(r) \, dr$$ \hspace{1cm} [3]

where, $v(r_i)$ is the nuclear-electron potential energy for the i^{th} electron.

$$E_0 = E_{v_{\text{ext}}}[\rho_0] = T[\rho_0] + \int \rho_0(r) v(r) \, dr + V_{\text{ee}}[\rho_0].$$ \hspace{1cm} [4]

The term $T[\rho_0] + V_{\text{ne}}[\rho_0]$ in equation [4] is unknown.
In the **Hohenberg-Kohn variational theorem**, Hohenberg and Kohn further proved that, the true ground state electron density minimizes the energy functional $E_v[\rho_{tr}]$, where ρ_{tr} is the trial density function that satisfies $\int \rho_{tr}(r) dr = N$ and $\rho_{tr} \geq 0$ for all r and the inequality $E_0 \leq E_v[\rho_{tr}]$ holds where, E_v is the energy functional in the equation (4). Hohenberg and Kohn proved their theorems only for nondegenerate ground states and later Levy proved the theorems for degenerate ground states(93).

While the Hohenberg-Kohn theorem tells us that if we know the ground-state electron density $\rho(r)$, we can determine the ground state wave function, it however does not tell how to calculate E_0 from ρ_0. It also does not tell how to obtain ρ_0 without finding the wavefunction.(90)-(94) In 1965 Kohn and Sham revisited this problem, which is briefly outlined below.

2.2 The Kohn-Sham Method

Kohn and Sham considered a fictitious system of N non-interacting electrons, which experiences an external potential energy $v_s(r_i)$ (index s is reserved here for the fictitious systems) (94). It was further assumed that the electron density of this reference system $\rho_s(r)$ is equal to the exact ground state electron density $\rho_0(r)$ of the system of N interacting electron system under consideration (molecule). The Hamiltonian of this system is given by:

$$\tilde{H}_0 = \sum_{i=1}^{n} \left[-\frac{1}{2} \nabla^2 + v_s(r_i) \right] \equiv \sum_{i=1}^{n} \tilde{h}_i^{KS} \quad (5)$$

where, \tilde{h}_i^{KS} is the one-electron Kohn-Sham Hamiltonian for the fictitious system (Kohn-Sham Hamiltonian). Additionally, since this system consists of noninteracting electrons, the ground state wave function $\psi_{s,0}$ is the antisymmetrized product (using...
the Slater determinant) of all the lowest energy one-electron spin-orbitals, which are the product of one-electron spatial orbital and a one-electron spin function. Further to this, they defined the difference between the kinetic energy of the interacting N-electron system and that of the fictitious system as:

$$\Delta \bar{T}[\rho] \equiv \bar{T}[\rho_0] - \bar{T}_s[\rho], \quad [6]$$

where, $\bar{T}[\rho_0]$ and $\bar{T}_s[\rho]$ are the average electronic kinetic energies of the interacting N electron system and the fictitious noninteracting N electron system respectively.

Similarly, the quantum mechanical many-body electron-electron interaction energy minus the classical one can be represented as:

$$\Delta \bar{V}_{ee}[\rho] \equiv \bar{V}_{ee}[\rho_0] - \frac{1}{2} \iint \frac{\rho(r_1)\rho(r_2)}{r_{12}} dr_1 dr_2. \quad [7]$$

Here the term $\frac{1}{2}$ is added so that the repulsion energy between the charges is not counted twice.

For simplicity, we can omit subscript 0 from ρ and by rearranging and substituting equation [6] and [7] in equation [4] we have:

$$E_{\text{ext}}[\rho_0] = \Delta \bar{T}[\rho] + \bar{T}_s[\rho] + \int \rho(r) v(r) dr + \Delta \bar{V}_{ee}[\rho] + \frac{1}{2} \iint \frac{\rho(r_1)\rho(r_2)}{r_{12}} dr_1 dr_2 . \quad [8]$$

which can be also rewritten as

$$E_{\text{ext}}[\rho_0] = \bar{T}_s[\rho] + \int \rho(r) v(r) dr + \frac{1}{2} \iint \frac{\rho(r_1)\rho(r_2)}{r_{12}} dr_1 dr_2 + E_{xc}[\rho], \quad [9]$$

where,

$$E_{xc}[\rho] = \Delta \bar{T}[\rho] + \Delta \bar{V}_{ee}[\rho]. \quad [10]$$
which is referred to as the *exchange-correlation (xc) energy functional* (94) and it is responsible for all the many-body electron-electron interaction. The term E_{xc} can be also written as:

$$E_{xc} = E_x + E_c,$$ \[11\]

where E_x and E_c are exchange and correlation energy respectively.

We note that even though the xc energy is a small part of the total energy of a typical system it plays the vital role in binding atoms together and therefore, Perdew coined it as “nature’s glue” (95). This quantum mechanical phenomenon arises as electrons move in such a way to avoid one another, which in turn, lowers the expectation value of the electron-electron Coulomb interaction. The exchange energy in the xc functional (equation [11]) is a consequence of the system obeying the Pauli principle and is free from the spurious self-interaction of an electron, when the exact Fock exchange is used. The correlation energy ($E_c = E_{xc} - E_x$) should account for the remaining effects of spatial and spin correlation in the many electron system.

<table>
<thead>
<tr>
<th>Types of exchange and correlation functionals</th>
<th>Typical examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local density approximation (LDA)</td>
<td>VWN (96), PZ81 (97), PW (98)</td>
</tr>
<tr>
<td>Generalized-gradient approximation (GGA)</td>
<td>PW91(98), PBE(99), RPBE(100), RevPBE(101), PBE$_{SO}(102)$</td>
</tr>
</tbody>
</table>

Johnson Matthey Technol. Rev., 2022, **66**, (1), xxx-yyy

https://doi.org/10.1595/205651322X16212512135401
Some of the popular exchange and correlation functionals are summarised in Table 1, which is not a complete list of all the exchange and correlation functionals currently available.

Table 1: Exchange and Correlation Functionals

<table>
<thead>
<tr>
<th>Category</th>
<th>Functionals</th>
</tr>
</thead>
<tbody>
<tr>
<td>van der Waals density functional (vdW-DF)</td>
<td>vdW-DF(103), vdW-DF2 (104), optB88-vdW(105), rev-vdW-DF2(106)</td>
</tr>
<tr>
<td>Meta-GGA</td>
<td>M06-L(107)(108), TPSS (109), Rev-TPSS (110)</td>
</tr>
<tr>
<td></td>
<td>B3LYP(111), O3LYP (112), HSE03(113), HSE06(114),</td>
</tr>
<tr>
<td>Hybrid functionals</td>
<td>PBE0(115), CAM-B3LYP(116), LC-ωHPBE(117)</td>
</tr>
</tbody>
</table>

3. Adsorption of transition metals atoms

3.1 Adsorption of transition metal catalyst on single and multi-layered graphene

The earlier theoretical studies on the adsorption of transition metal (TM) adatoms on carbon materials were mainly reported on a single layer of sp² hybridised carbon support with some reports on a few layers of graphene and these studies were mainly focused on structure, bonding, magnetic properties of the adsorbed TMs on graphene and their migration to the high symmetry sites (118). Duffy et al. for example, used the linear combination of atomic-orbitals-approach as implemented in DMol package to study the effect of the surface on the 3d TM adatoms and dimers on a cluster model.
of graphite.\(^{(119)-(120, 121)}\). In their calculation they used the local spin density approximation using the Vosko-Wilk-Nusair (aka VWN) exchange and correlation functional \(^{(96)}\). They reported that the preferable adsorption sites of Sc, Ti, Cr, and Mn are above the C-atoms while Fe, Co and Ni prefer over the rings. Due to the hybridization between these metals with the \(\pi\)-orbitals of graphite there is a small electron transfer. It was also seen that the total magnetic moments are higher for Sc, Ti and V by \(1 \mu_B\) than the free atom and lower by \(2 \mu_B\) for Fe, Co and Ni, while Cr and Mn have reversed their free atom values. To understand this behaviour, they considered the local density of states of the Fe/graphite (with \(C_{6v}\) symmetry: Fe stable over the hole-position) and V/graphite (with \(C_{3v}\) symmetry: V stable over-atom position) systems. In the Fe/graphite system, the molecular orbitals (MOs) mainly comprise 3\(d\) and 4\(s\) orbitals and a small admixture of 4\(p\) orbitals. These molecular orbitals are labelled by the \(C_{6v}\) group i.e., \(a_1, a_2, b_1, b_2, e_1\) and \(e_2\). However, only the \(a_1, e_1\) and \(e_2\) orbitals have metallic as well as C \(\pi\)-orbital components. A careful analysis of these orbitals showed that the adsorbed atom has the tendency to shift the 4\(s\) orbital energy up with respect to the 3\(d\) orbitals meaning an electron configuration of \(3d^{n+2}4s^0\) is preferred over \(3d^n4s^2\) where \(1 \leq n \leq 8\) of the elements under consideration (note that Cr has an electron configuration of \(3d^54s^1\) due to half-filled electron configuration being more stable). From such analysis they were able to explain the reduction of the atomic
spin moment by $2\mu_B$ in Fe. Similar analyses were done on V/graphite system, which showed that there is also a tendency for increased population of $3d$ related MOs but due to its enhanced hybridization with the graphite surface this effect is reduced, which leads to an increase in the spin moment by $1\mu_B$. In another study, Valencia et. al. performed periodic spin polarised density functional theory calculations using a projector-augmented wave scheme (PAW), and the PW91 exchange and correlation functional as implemented in the VASP code to explore the trends in adsorption of the $3d$ transition metal atoms on graphene.(122) They found that Sc, Ti, Fe and Co could

Figure 5. Qualitative MO interaction diagram for $M+\text{C}_6\text{H}_6$. Only the six π MOs of benzene were considered. Labels for the MOs are indicated within the C_{6v} symmetry point group. Metal valence electrons are not shown (Ref: Valencia et al. J. Phys. Chem. C, 2010, 114, 14141).
remain isolated on the graphene surface but other metals in this series may diffuse with a possibility to form aggregates. They employed density of states and Bader charge analysis to explain the observed trends. Another interesting aspect of this study was the use of the organo-metallic $\text{M(}\eta^6\text{-C}_6\text{H}_6\text{)}$ molecular orbitals to bridge the language used to describe molecular states and that used to describe solid states.

Figure 5, shows the qualitative interaction orbital diagram for the $\text{M(}\eta^6\text{-C}_6\text{H}_6\text{)}$ C$_{6v}$ system using Hückel calculations by means of CACAO.(123–126) This simplified MO diagram shows six 2n-orbitals of benzene and the valence orbitals of the 3d TM atom and as described above, these orbitals are labelled by the C$_{6v}$ group. Of the six 2n-orbitals, three with a_1 and e_1 symmetries are occupied, which interacts with the 4s and 3d orbitals of similar symmetries giving three bonding orbitals mainly localised on the benzene participating in the M-C bonds directing downward. The three antibonding orbitals, which remain unoccupied are mainly localised on the metal 4s and 3d orbitals and directed upward. The metallic group orbitals are shown in the centre of the interaction diagram and they are formed of $1e_2$ (from mixing of $3d_{x^2-y^2}$ and $3d_{xy}$ orbitals, with antibonding π^*_{CC} orbitals of benzene participating in metal-carbon δ bonding), $2a_1$ (from mixing of 4s, $3d_{z^2}$, $4p_z$ orbitals and the in-phase π_{CC} MO, which leads to a nonbonding σ MO), $2e_1$ (formed by mixing of $3d_{yz}$, $4p_x$ and $4p_y$ orbitals interacting with the bonding π_{CC}) and $3a_1$ (derived mainly from the metal 4s orbital).

They employed this qualitative $\text{M(}\eta^6\text{-C}_6\text{H}_6\text{)}$ MO description along with the calculated partial density of states for the periodic M@graphene to show that the energy levels follow a global order *i.e.*, $1e_2 \sim 2a_1 < 2e_1 < 3a_1$ and they used this scheme to clarify the observed trends on chemisorption of 3d TM with an exception of half-filled Cr and
Mn and fully filled Cu 3d atoms, which physisorb on the graphitic surface. Further to this, they used qualitative molecular orbital diagrams and charge transfer considerations to explain the trends observed in computed magnetism. They also concluded that Sc, Ti, Fe and Co are stable as isolated atoms on the graphitic surface and other metals diffuse to eventually form aggregates. In another interesting study Nakada et al. reported the adsorption and migration energies of adatom with atomic numbers 1 - 83 on graphene at the LDA level of theory using the PAW method as implemented in VASP.\(^{(127)}\) In this study they reported that the transition metal elements mainly adsorb on the hollow sites. They noted that the adsorption types can be of two types \(i.e.,\) with fixed adsorption and those with no fixed sites. For the systems with no fixed adsorption sites they estimated the migration energy barrier as 0.5 eV where, the minimum limit of the migration energy was obtained by taking the difference between the adsorption energies for each site. They concluded that for metal-graphene junctions in addition to the adsorption energies the migration energy plays an important role. Recent studies by Manadé et al. also reported a systematic study on the adsorption of 3d, 4d and 5d TM adsorbed on graphene. In this study they also concluded that TMs prefer the hollow sites when chemisorbed. However, if they are physisorbed for example, in the case of \(d^5\) and \(d^{10}\) configuration, then they prefer the bridge or the top sites. Their study showed that inclusion of dispersive forces simply increases the adsorption energies of the TM by \(\sim 0.35\) eV. They also reported the electron transfer behaviour of the TMs and found that it decays along the series because of the increase in electronegativity.\(^{(128)}\)
In addition to the adsorption of transition metals on a single layer graphene, studies on the adsorption of metal adatoms have been reported on bilayer and trilayer graphene.(129)-(130)-(131)-(132) For example, Hardcastle \textit{et al.} employed plane-wave density functional theory to investigate the adsorption properties of Au, Cr and Al atoms on the armchair and zigzag sites of monolayer graphene and on the adsorption sites of single, bi and tri layer graphene. They investigated the adatom mobility on the pristine substrates.(132)-(133) They used the CASTEP code with PBE exchange and correlation functional in conjunction with Tkatchenko-Scheffler van der Waals correction scheme (134). In this study they concluded that the graphene sublayers make a significant contribution to the total binding energy of the adatom and the adatoms are extremely mobile on graphene at room temperature. In the recent years, the trends of theoretical studies on the interaction of TMs on graphene, have moved towards exploring the interaction of more realistic metal nanoparticles on graphene(135, 136). For example, Engel \textit{et al.} recently systematically studied the electronic properties of Au clusters on graphene using DFT-D+U(135). Further to this, the interactions of molecules for example, NO\textsubscript{2}, H\textsubscript{2}S, and glucose on TM atoms and clusters supported on pristine graphene have been also reported (137)-(138)-(139).

\textbf{3.2 Adsorption of transition metal catalyst on graphene with vacancies}

Graphene can display single and/or multiple vacancies but it is worth-mentioning that the filling of such a vacancy may occur due to the reservoir of loose carbon atoms readily available nearby these vacancies (140)-(141). The single vacancy refers to a missing C-atom from the lattice and the double vacancy can be created by combining two single vacancies or by removing two neighbouring C-atoms. Double vacancies may
result in different types of configuration *i.e.*, two pentagons and one octagon (5-8-5), three pentagons and three heptagons (555-777) and four pentagons, one hexagon and four heptagons (555-6-7777) (140). Therefore, in addition to the interaction of transition metals on pristine graphene, studies on graphene with single and double vacancies have been also reported, which is not only interesting from the catalysis point of view but also from the context of spintronics and Kondo physics (142). Krasheninnikov *et al.* for example, presented a density functional theory study on the structure, bonding and magnetic properties of the first transition metal series, Pt and Au on the single and double vacancies of single graphene sheets (142). They found that on the single vacancies (SV), all the metal atoms form covalent bonds with the under-coordinated C atoms and as the atomic radii of TMs are larger than carbon, the metal atom bulges out of the graphene plane. The TM-C bond lengths were seen to decrease from Sc to Fe due to the decrease of the TM radii and then it increases as bonding becomes weaker. The calculated binding energies of the TMs on the single vacancies were typically about -7 eV with an exception of fully filled *d*-shell elements such as Cu and Zn. They further noted that single vacancy complexes are magnetic for V, Cr, Mn, Co and Cu and nonmagnetic for Fe and Ni. On the other hand the transition metals on double vacancies all the TMs from V to Co are magnetic, which is related to the fact that on double vacancies due to the larger “hole” the interactions of the TMs are weak and therefore, the complexes are in higher spin states. In another study Krasheninnikov *et al.* using strain fields, further demonstrated that metal atoms have high affinity to the non-perfect and strained regions of the graphene with defects (143). In this work they visualised the strain fields as the difference between the bond
lengths between the graphene sheet with and without defects, which suggested that all vacancies result in strain fields in the vicinity of the defects in the range of 2-3 nm or even more. In 2013, Robertson et al. used aberration corrected transmission electron microscopy (ACTEM), high resolution (HR-) TEM, electron microscopy and DFT to show that single Fe atoms can be trapped on the single and double vacancies of graphene, forming covalent bonds and causing significant displacement, up to 0.5 Å, of the surrounding carbon atoms. They further reported that Fe on such vacancies are more stable than when they are incorporated into the graphene edge.

In recent years, theoretical studies have moved towards understanding the interaction of small TM clusters on the single and double vacancies of graphene. In this regard, Sen et al. investigated the stability and electronic properties of Pdₙ (n = 1–5) clusters on different types of double vacancies mentioned above using DFT and molecular dynamic simulations (144). Their study revealed that the adsorption of Pd₄ clusters on the defect bridge site of double vacancy of (555-777) is favourable, which they concluded is because of the hybridization between C 2p and Pd 4d and 5s orbitals and higher charge transfer to the graphene sheet. Further to this, the latest studies in this area are focused on understanding the interaction of molecules on TM clusters adsorbed onto the graphene lattice vacancies. For example, Hamamoto et al. used DFT to demonstrate that the local electronic properties of CO adsorbed on Pt₄ clusters supported on graphene with 1 to 4 vacancies are remarkably altered due to its interaction with the dangling bonds of carbon atoms in the defect sites (145).

3.3 Adsorption of Transition metal catalysts on doped graphene
The introduction of heteroatoms such as N and B into the carbon framework of graphene can be used to tailor the electronic and local geometrical properties of graphene for applications in catalysis.\(^{(146)-(152)}\) The substitution of N (n-type doping) in the graphene lattice usually leads to four common bonding configurations, which include (i) quaternary N (obtained by substituting the C-atoms of the hexagonal ring by the N-atoms), (ii) pyrrolic N (obtained by N-atoms due to the bonding on the five-membered rings as in pyrrole), (iii) pyrazolic N (obtained by the insertion of an aromatic N\(_2\) moiety in a five-membered ring as in pyrazole) and (iv) pyridinic N (obtained by substitution of the N-atoms at the defect sites or on the edge of graphene as in pyridine)\(^{(146)-(153)-(154)}\). Similarly, it has been shown that doping with boron (p-type doping) or more complex functional groups such as boronic esters and boronic acids can be also done on graphene\(^{(155)}\). Such incorporation of dopant atoms leads to significant alteration of the electronic properties of graphene for example, Zhang et al. theoretically showed that substitution of N on the graphene framework introduces asymmetric spin density and atomic charge density making it favourable to oxygen reduction reactions\(^{(156)}\). Recently, reports on doping of graphene with Be, S, Si, and P have been also made\(^{(157)-(158)}\). It is worth mentioning that doping on graphene can be also achieved by electron exchange between adsorbed species on graphene surfaces\(^{(148)}\).

It has been now shown that the durability and activity of transition metal catalysts such as Pt increases significantly on N-doped carbon supports\(^{(159)}\). In this regard, numerous theoretical studies have also been performed for example, Groves et al. used DFT as implemented in the GAUSSIAN03 package on 42 C-atom cluster models.
to calculate the binding energy between N-doped graphene structure and Pt adatoms in order to explore the molecular orbital and natural bonding orbital data (160). They showed that N-doping increases the binding energy of Pt to the substrate and the binding energy increases if the N-atoms are closer to the C-atom bonded directly to the Pt adatom. In another study Zhou et al. employed the DMol³ code to study the effect of N and B doping on the stability of defective graphene supported Niₙ (n= 1 – 6) clusters (2). They found that the binding energies of these clusters on doped defective graphene were higher than on pristine graphene meaning the stability of Ni clusters were further improved. It was also seen that Niₙ clusters were more stable on the B-doped defective graphene than the N-doped once. The probable reason for this was attributed to the fact that B heteroatoms promote stronger hybridization between C-atoms and Ni-atoms. Another interesting study by Kropp et al. also found that N doping resulted in increased binding energies of transition metals (161). These studies clearly suggested that N and B-doped graphene can be good catalyst support. We note that in recent years there have also been some studies in which the adsorption of small gas molecules on transition metal doped graphene have been reported (162).

3.4. Adsorption of Transition metal catalysts on amorphous carbon.

Theoretical studies on the geometrical and electronic properties of graphene (mainly graphene nanoflake cluster models (GNFs)) with organic functional groups (OFGs) to model the basic structural units of carbon black, graphene oxide, activated carbon and soot have been reported (8, 163–167). For example, Efremenko et al reported the adsorption properties of phenol on activated carbon, Hamad et al. reported the adsorption of water on soot particles and we have also investigated the detailed
electronic properties of graphene nanoflakes with OFGs to mimic the BSUs of amorphous carbon materials discussed earlier in section 1 with various shapes and sizes (76, 89, 163–165). In this regard, we investigated the influence of orientation and stacking patterns of the model BSUs on the electronic properties. In these models, the oxygen containing OFGs such as −OH, −CHO, and −COOH were decorated on the periphery of the GNF models. In one of these studies we used −OH and −SH groups to understand the effect of chemical constitution of these materials (Figure 6). The models constituted of pristine GNF models (referred to as G in Figure 6(a)), with only −OH groups (i.e., G(OH)), with only −SH groups (i.e., G(SH)) and models with mixed −OH and −SH groups (i.e., G(OS-C_{3h}) and G(OS-C_{s}); C_{3h} and C_{s} refers to the symmetry of the models). Additional studies on the effect of different stacking conformations with

Figure 6. (a) Pristine graphene (G) model saturated with H-atoms, (b) G(OH), (c) G(SH), (d) G(OS-C_{3h}) and G(OS-C_{s}) (Ref. A. Chutia, F. Cimpoesu, H. Tsuboi and A. Miyamoto, Chem. Phys. Lett., 2011, 503, (1–3), 91)
two, three and four layers of G(OH) and G(SH) models on the electronic properties were undertaken (see Figure 7). From these studies it was seen that in the fully relaxed geometries, the CSH angles (due to the –S…HS– bonds) were closer to 90° when compared with the COH angles (due to the –O…HO– bonds), which was related to different hybridization abilities of the O and S-atoms and due to the charge-charge interaction in O…H and charge-quadrupole interaction in S…H. Further to this, it was concluded that by substitution of different OFGs and by using different stacking patterns (such as AAA or ABA) the electronic properties of these systems could be significantly altered. Based on these studies, we also investigated the adsorption properties of Pt-adatom and Pt$_4$ cluster on GNFs with varying concentration of hydroxyl groups (f-GNFs) (8). In this study, based on the DFT results it was proposed that the
loading of Pt catalyst on carbon supports could be engineered by controlling the concentration of oxygen containing OFGs. In addition to the studies on decorating graphene with oxygen containing OFGs there are several studies in which the O-doped graphene have been used to investigate the adsorption properties of transition metal clusters, which include Pt₃, and Pt₃M (M=Sc, Ti, V, Cr, Mn, Fe, Co and Ni) (168, 169). In one of these studies, Cui et al reported that Pt₃Ni supported on the O-doped graphene exhibit enhanced catalytic performance (169). In some recent work, more complex studies of transition metal adsorption on the OH decorated N-doped graphene have been reported. For example, Sahoo et al used transmission electron microscope (TEM), high resolution TEM (HRTEM), hard X-ray photoelectron spectroscopy

Figure 7. Optimised geometries of (a) G(OH) and (b) G(SH) (Ref. A. Chutia, F. Cimpoesu, H. Tsuboi and A. Miyamoto, Chem. Phys. Lett., 2011, 503, (1–3), 91)
(HAXPES), combined with DFT calculations to report the charge transfer of Pd catalyst to pyrrolic-N doped reduced graphene oxide (NRGO) (170). In this study, they showed that strong bond between Pd and pyrrolic-fraction of the N-moieties can be formed, which can be further strengthened by the presence of oxygen containing functional groups. This study further reported that the charge-transfer from the Pd 3d-orbitals to the 2p-orbitals of C, N and O of NRGO results in high oxygen reduction reaction. In another recent study Rout et al synthesised highly active and well-defined Au-Cu nanoparticles supported on reduced graphene oxide(171). These nanoparticles were then characterised using various techniques, which include UV-vis, XRD, HRTEM, STEM Raman and XPS. They found that Au$_3$Cu$_1$ bimetallic clusters exhibited superior catalytic activity. In this study, they used density functional theory on cluster models of reduced graphene oxide to clarify the reasons for the high catalytic activity of these nanoparticles. They concluded that efficient adsorption of the highly dispersed Au$_3$Cu$_1$ on reduced graphene oxide led to the enhanced catalytic activity.

As we can see from the above studies, the models on the amorphous carbons such carbon black, graphene oxide, activated carbon, and soot are based on a single layer of graphene. This is especially because of the complexity in modelling these systems. However, there are some interesting studies made towards modelling of complex amorphous carbons. For example, recently Caro et al reported a systematic study in which they combined machine learning and DFT to theoretically understand the surface chemistry of amorphous carbons (172). In another study Ranganathan et al. employed molecular dynamics simulation to produce models of amorphous carbons (173). Clearly, more research in this area is required to reproduce as realistic models of
amorphous carbons as those of the experiments and to understand the interaction between these catalyst supports and catalysts to design novel and efficient catalysts.

4. Concluding remarks and future direction

In this short review, we presented a discussion on the structural and chemical features of graphene related carbon materials, which are widely used as catalyst supports. We summarised that, so far numerous theoretical studies have been done on the adsorption properties of transition metal adatoms, and clusters on graphene and related systems. The current trend of these studies is moving towards modelling more and more realistic transition metal nanoparticles interacting with graphene. Most of these theoretical studies are however done on pristine and/or modified graphene models. Clearly, more theoretical research is required in this area to reproduce realistic models of amorphous carbon supports to complement the models reported in the experimental studies to further our understanding on the interaction between catalyst and catalyst supports to design novel and efficient catalysts. Here, we reviewed some of the important studies which employed density functional theory, however, to gain deeper understanding of the structure property relationship of these industrially important carbon materials and their interaction with catalysts, multiscale modelling will be required. Artificial intelligence and machine learning tools will be particularly beneficial in this pursuit.

Acknowledgement: We thank Dr. Ikutaro Hamada for his helpful discussion during the preparation of the manuscript. We also thank Cirrus UK national Tier-2 Service at EPCC (funded by University of Edinburgh and EPSRC (EP/P020267/1)), Athena at HPC
Midlands+ (Funded by EPSRC, EP/P020232/1), and ARCHER2 (via Materials Chemistry Consortium and EPSRC (EP/L000202)) and Supercomputer Wales.

References

https://doi.org/10.1595/205651322X16212512135401

181, (984), 101 LINK https://doi.org/10.1098/rspa.1942.0063

30. C. A. Coulson, NatureGroup, 1947, 159, 265

https://doi.org/10.1016/0022-1902(62)80258-9

https://doi.org/10.1595/205651322X16212512135401
 LINK https://doi.org/10.1107/s0021889868004930

https://doi.org/10.1021/ac00032a012

https://doi.org/10.1016/S0008-6223(01)00109-9

Johnson Matthey Technol. Rev., 2022, **66**, (1), xxx-yyy

https://doi.org/10.1595/205651322X16212512135401

Johnson Matthey Technol. Rev., 2022, **66**, (1), xxx-yyy
https://doi.org/10.1595/205651322X16212512135401 Page 43 of 48
3), 91 LINK https://doi.org/10.1016/S0039-6028(03)00837-9

140. F. Banhart, J. Kotakoski and A. V. Krasheninnikov, *ACS Nano*, 2011, **5**, (1), 26

https://doi.org/10.1595/205651322X16212512135401
 LINK https://doi.org/10.1016/j.apsusc.2015.08.177

 LINK https://doi.org/10.1039/c5cp04211a

 LINK https://doi.org/10.1038/srep23495

 LINK https://doi.org/10.1038/ncomms1643

 LINK https://doi.org/10.1039/c5ta10599d

 LINK https://doi.org/10.1021/jp201991j

 LINK https://doi.org/10.1002/cphc.201700278

 LINK https://doi.org/10.1016/j.chemphys.2014.06.016

 LINK https://doi.org/10.1021/la7029278

 LINK https://doi.org/10.1016/j.cplett.2009.09.074

 LINK https://doi.org/10.1021/acscatal.9b01944

https://doi.org/10.1016/j.physe.2019.113768

https://doi.org/10.1143/jjap.47.3147

https://doi.org/10.1016/j.physb.2010.01.012

https://doi.org/10.1007/s11426-015-5549-9

https://doi.org/10.1039/c6cp02692c

168. N. Jin, J. Han, H. Wang, X. Zhu and Q. Ge, *Int. J. Hydrogen Energy*, 2015, **40**, (15), 5126

https://doi.org/10.1016/j.ijhydene.2015.02.101

169. C. Cui, M. Sun, X. Zhu, J. Han, H. Wang and Q. Ge, *Catalysts*, 2020, **10**, (2), 156

https://doi.org/10.3390/catal10020156

https://doi.org/10.1039/d0ta12618g

https://doi.org/10.1016/j.apcata.2017.03.017

Johnson Matthey Technol. Rev., 2022, **66**, (1), xxx-yyy

https://doi.org/10.1595/205651322X16212512135401

Page 47 of 48

The Author

Arunabhiram Chutia received his PhD in theoretical and computational chemistry from the Graduate School of Engineering, Tohoku University, Japan. Thereafter, he undertook his postdoctoral research in materials science and heterogenous/homogenous catalysis at WPI-Advanced Institute of Materials Research, Institute of Fluid Science (Tohoku University), at the Fuel Cell Nanomaterials Centre (Yamanashi University) and jointly at University College London and the UK catalysis Hub in the UK. Currently, he is a senior lecturer in chemistry and leads the molecular surface chemistry group (www.molsurfchem.org) at the University of Lincoln.