
www.technology.matthey.com

https://doi.org/10.1595/205651322X16316969040478 Johnson Matthey Technol. Rev., 2022, 66, (2), 122–129

122 © 2022 Johnson Matthey

Timothy Johnson
Johnson Matthey, Blounts Court, Sonning
Common, Reading, RG4 9NH, UK

Email: timothy.johnson@matthey.com

PEER REVIEWED

Received 14th July 2021; Revised 10th September
2021; Accepted 14th September 2021; Online 15th
September 2021

It is human nature to prefer additive problem
solving even if removal may be the more
efficient solution. This heuristic has wide ranging
implications when dealing with science, innovation
and complex problem solving. This is compounded
when dealing with these issues at an institutional
level. Additive solutions to workflows with extra
software tools and proprietary digital solutions
can impede work without offering any advantages
in terms of Findable, Accessible, Interoperable,
Reusable (FAIR) data principles or productivity. This
viewpoint highlights one possible workflow and the
mentality underpinning it with an aim to incorporate
FAIR data, improved productivity and longevity
of written documents while improving workloads
within industrial research and development (R&D).

Introduction

FAIR data principles have been held as the gold
standard for ensuring data across the sciences and
across individual institutions is generated and kept
in as sustainable a way as possible (1). FAIR data
principles unlock powerful ‘data lake’ workflows
that allow for multiple interactions, machine
learning and deep insight to be gained, adding
value to already collected data (2). Reports and

Emacs as a Tool for Modern Science
The use of open source tools to improve scientific workflows

peer reviewed publications are needed to share
knowledge with others at both an inter- and intra-
institution level.
One nemesis to this approach is the use of

proprietary software and proprietary data
standards. It has been suggested that all research
software should be free open source software
(FOSS) and that closed source software should
be the exception (3). The use of FOSS and open
source hardware has been shown to offer flexibility
and insight in a range of practical applications
within chemical R&D (4–6).
A wealth of new software is available every

year including productivity tools, document
management, data analysis suites and code
produced via individuals or research groups. One
recent report showed that ~51,000 publications
in the life sciences had 25,900 unique pieces of
software cited (7). In addition to the wealth of
new software offerings humans are keenly biased
towards additive problem solving (8). Adding to an
existing system rather than taking away in order
to solve a problem is seen across sectors, job roles
and in the digital tools used to enable science.
An exemplar of this type of approach in software
was seen with the introduction of the ribbon into
Microsoft Office. Those more experienced with the
software were more likely to be dissatisfied and
impeded by the addition of the ribbon into the
Office suite (9). Frustration stemming from unclear
error messages, poor wording and lack of training
lead to a loss of as much as 40% of a user’s time
trying to solve software related issues (10).
As we train the next generation of scientists, and

during the course of professional development, it
is imperative that individuals reflect on and take
control of the digital tools used to plan, conduct
and share work. Frustration can be avoided if the
tool being used is understood. Ideally, any skills
learned during any part of an individual’s scientific

123 © 2022 Johnson Matthey

https://doi.org/10.1595/205651322X16316969040478 Johnson Matthey Technol. Rev., 2022, 66, (2)

career should be transferable. This is not possible
if proprietary software solutions are used as there
is no guarantee the software will be available at a
new role either due to funding, dropped support or
incompatibility with other systems.
One part of the solution to this, as demonstrated

clearly by software projects like GNU/Linux
(referred to herein as Linux), is the use of open
source plain file formats like text files. Text files are
human and computer readable, have demonstrable
longevity and, crucially, are free and open source.
Coupling this with tools that allow users to build,
maintain and deploy their own solutions could
resolve many of the frustrations seen with modern
computer use.
Herein a demonstration of a workflow using

a single tool, working with just text files, that
can be used to radically change the workflow of
a modern, flexible and agile scientist. The key
benefits are increased productivity, return on
investment, cost and environment, health and
safety via improved ergonomics. In this viewpoint
it will be demonstrated that such a solution exists
and how it can be used in the context of corporate
R&D.

Emacs and Org-Mode

Figure 1 shows two simplified workflows.
Figure 1(a) shows the current state for many
scientists. Each box in this flow represents
a separate piece of software. These often
have different shortcut keys, require many
open programs and limit the user in terms of
customisability and automatic flows. Each box
may represent a different piece of software with
separate associated upkeep costs, adding to both
R&D expenditure and cost to monitor and ensure
compliance with licenses. Figure 1(b) shows one
possible solution where a single software solution
replaces all the programs in a digital workflow.
This workflow is possible with the open source and
free program: Emacs.

Emacs

Emacs is a fully programmable and extensible text
editor. It is used widely in the IT and programming
fields. Originally developed in the 1970s, the
version used today (GNU Emacs - referred to
herein as Emacs) was developed in the 1980s by

Fig. 1. Two simplified scientific workflows using: (a) current offerings; and (b) Emacs

Scientist

Emacs planning

Data collection

Emacs data processing

Report and paper
preparation in Emacs

Scientist

Note takingEmail
client

Todo/task
lists

Reference
manager

Data collection

Plotting suiteCoding environment Data processing

Word processor

Report/paper

(a) (b)

124 © 2022 Johnson Matthey

https://doi.org/10.1595/205651322X16316969040478 Johnson Matthey Technol. Rev., 2022, 66, (2)

Richard Stallman. It may seem retrograde that a
decades old software solution can compete with
newer offerings, but its longevity speaks to its
utility. Emacs has been maintained and updated
throughout this period with versions available
across Windows, macOS and Linux.
Out of the box Emacs is a blank canvas. The

decades of use mean that many contributors
have written, maintained and updated a large
number of packages that can be downloaded and
used for free. These packages are completely
user customisable and self-documenting. Emacs
allows the user to employ these packages to
build what is needed from the ground up. The
below examples demonstrate how this approach
can be used in a range of tasks in corporate R&D.
This was built and personalised in-house with
speed and ease of use being key. By building
this tool from the ground up there is no bloat or
incompatibilities that come with other, long lived,
commercial solutions.
Figure 2(a) and 2(b) shows the software

loaded in either its unmodified form or after the
application of one of the many distributions, in
this case Spacemacs. These distributions come
preconfigured for ease of use and with many quality
of life features. It is possible for a user to use one
of these or to build their own version.
Because the below use cases can be achieved

from within one piece of software, productivity and
focus can be retained with the use of suite-wide
shortcuts and hot keys. This reduces the possibility
of fragmented work which can reduce productivity
(11). Emacs is also fully controllable from the
keyboard, again improving speed, productivity and
ergonomics.

Org-Mode

Org-mode is a major mode (a set of instructions for
how certain files should be handled) for Emacs which
was developed in 2003 by astrophysicist Carsten
Dominik. Initially as a way to organise Dominik’s
work, it has grown into a full suite. Allowing for
everything from ‘todo’ task management to note
taking and scientific manuscript preparation.
Importantly, it allows for a single document to

contain data, working code and prose (12). Org
mode has several minor modes (options that can
be turned on or off) which can unlock advanced
features impossible with other free or commercial
solutions. These will be discussed in the following
sections.

Scientific Overhead

Data generation does not happen in a vacuum. A
scientist’s work day includes ‘scientific overheads’
that can dramatically lower the time spent by an
individual on the act of conducting high quality
science (13). Indeed only ~40% of young
researchers’ time in academia is spent on research,
with the majority of the remaining time spent on
writing and administration (14).
This is represented pictographically as the first

set of software in Figure 1(a). This can be thought
of as everything up to the act of experimentation
along with all the administration tasks associated
with modern knowledge work. Emails, meetings
and conferences all add to the overhead workers
face. The following section is not an exclusive list
of what can be done but aims to demonstrate a
few case studies of how Emacs can remove the

(a) (b)

Fig. 2. (a) Emacs splash screen; (b) Spacemacs splash screen

125 © 2022 Johnson Matthey

https://doi.org/10.1595/205651322X16316969040478 Johnson Matthey Technol. Rev., 2022, 66, (2)

burden of scientific overheads by consolidation of
tasks with Emacs and Org-mode.

Daily Planning

The act of producing, reviewing and executing a
plan is an essential component of problem solving
(15). Time management behaviours improve job
satisfaction and health while negatively impacting
stress (16). Org-mode allows for easy task
management and planning from within the Emacs
environment.
By setting up ‘Org-capture’, a package that

works with Org-mode, todos can be captured and
stored centrally from anywhere within Emacs.
This makes capturing and recording tasks without
interruption to flow trivial. Agendas and todo lists
can be automatically populated from multiple
sources (for example, reading list, meeting
notes, project files). Importantly this approach
works well with systems like ‘getting things
done’ while staying flexible enough to allow for
individual customisation (17). Examples of todo
management as well as automatically generated
agenda views can be found in Figure 3(a) and
3(b) respectively.

Administration

Additionally other tedious tasks can be automated.
The use of tools like ‘Yasnippet’ allow for chunks of
text to be stored and pasted into a document with
only a few key presses. The production of meeting
notes, for example, can be sped up by producing
a template which can be imported. These can be
exported via a .tex file and rendered into a PDF
using LaTeX. This may seem arduous but, once set
up, this is completely automated.

Macros can also be recorded and called when
needed. If any task is done repeatedly then tools
with Emacs can be used to automate that process.
This reduction of overheads frees up a scientist
to allow them to do what generates value for
companies and academic institutions alike.
In a world where scientists are not just expected

to produce data but be fully fledged knowledge
workers, tools like this are invaluable. Their
flexibility and utility can be tailored to the user’s
workflow, enabling high productivity work to be
conducted.

Reference Management

The act of collecting, reading and making notes
on reference materials is a key aspect of scientific
work. Importantly any possible solution to digitalise
this should allow for citations to be placed within
documents as well as easy access to referencing
styles. This is possible with commercial solutions
and even some open source options. Where an
Emacs workflow outshines all is that the reference
manager, note taking, citation tools and writing
program are all one.
Packages like ‘Org-ref’ allow for import of PDFs

from digital object identifiers (DOIs) allowing for
fast import and conversion into a defined bibtex
file (the plain text file used by LaTeX to generate
citations). Notes can be accessed quickly using a
package like ‘Interleave’ or ‘Org-noter’ which allows
for automated note taking during the reading of a
document, Figure 4.
Linking of notes and PDFs is extremely powerful

and a rarity in the reference manager space.
Due to the notes being in plain text they are also
searchable unlike PDF highlighting or other, non-
text or paper based, approaches.

 (a) (b)

Fig. 3. (a) Todo lists; (b) agenda views

126 © 2022 Johnson Matthey

https://doi.org/10.1595/205651322X16316969040478 Johnson Matthey Technol. Rev., 2022, 66, (2)

Post Experiment Workload

Data Analytics

One of the benefits of multidisciplinary teams is
learning about best practices outside of one’s field.
One concept that has taken hold in the computer
science world is that of literate programming.
Literate programming is the idea that written code
should not just tell a computer what to do but that
it is imperative that the code also informs a human
about what is running (18).
This approach should be common to scientists.

The aim of written reports, manuscripts and
presentations is to display complex data and
analysis in an easy to understand form for humans.
The problem, as we approach more complex
analysis, is that: (a) the analysis is split from the
final report or manuscript which leads to loss of
reproducibility; or (b) that the analysis is hidden
in proprietary software that does not conform to
FAIR principles nor the longevity principles a large
corporate or academic institution may expect.
Org-mode, by utilising ‘Org-babel’, allows for

chunks of code to be written and executed from
within a single document. Variables can be extracted
from these code blocks and then embedded in the
text or fed into other code blocks. There are clear
parallels between this type of approach and that of
the IPython/Jupyter notebooks. These notebooks
offer similar advantages in combining prose and
code, allowing for reproducibility in data analytics.
Both Emacs Org-mode and IPython/Jupyter
notebooks offer parallelisation as a feature within
the language. These notebooks do, however, suffer
from the same issues described above as they form
part of a fragmented software solution. As will be
described below, they also lack the ability to embed
analysis to a final manuscript.

Plotting can be done in the same way with direct
output to a number of image formats that can, in
turn, be embedded into the Org file. If one simply
wants a way to record one’s work in an easy to
follow format which is completely human readable
then Org-mode makes that a simple task. Where
the power of this approach becomes evident is
when this is linked with manuscript or report
production.

Manuscript and Report Preparation

Org files are human readable with any text editor
but Emacs unlocks many ways to quickly access
the myriad of features not available outside Emacs.
Importantly Org files can be exported in a range
of formats including PDFs, markdown and open
document formats. This manuscript was prepared
as a Org file which was automatically processed
into a .tex file and rendered into a PDF. Tools like
‘Writeroom-mode’ format documents to allow for a
distraction-free writing experience, Figure 5.
When it comes to reports and manuscripts

written in Emacs and Org-mode it is trivial to
produce literate documents. Data and analysis
can all be included within the manuscript
which is also machine accessible. This works
well with FAIR principles allowing for a human
readable document to also act as metadata and
a repository for computer readable data. To
demonstrate this Figure 6(a) is a plot rendered
by Python code embedded in this document. The

Fig. 4. An example of note taking while viewing a
PDF using Interleave

Fig. 5. A view of a draft of this manuscript from
within Emacs using Writeroom-mode

127 © 2022 Johnson Matthey

https://doi.org/10.1595/205651322X16316969040478 Johnson Matthey Technol. Rev., 2022, 66, (2)

values have been calculated from data within
the file. The code snippet for this can be seen
in Figure 6(b). If any changes are made to the
analysis or the data, the plot is updated. This
means that a single Org file can be provided and
all data and analytics can be reproduced. It also
makes the process of data analytics and report
writing much easier. Any changes to the analysis
will be updated in the text, either via plots or by
embedded variables. This reduces the cognitive
load associated with making requested changes,
either during the peer review cycle or due to
feedback from colleagues.
Previous reports have demonstrated how

experimental data can be embedded into PDFs
produced from Emacs allowing for a manuscript or
report to contain all the data reported (19). The
benefits of this are clear for both scientific integrity
and rigour but also as a way to ensure a report or
manuscript can be understood fully if an employee
were to leave an institution, retaining the value of
that work indefinitely.

Limitations

Emacs has a reputation of being difficult to learn
and this should not be ignored. Emacs has a
learning curve however this can be as steep or
as shallow as the user needs. Emacs distributions
like ‘Spacemacs’ or ‘Doom Emacs’ allow for
mnemonics key bindings and other quality of life
features. Vanilla Emacs has many of the graphical
user interface aspects you would expect, such as
menus, which allows for most of the functionality
to be explored. Becoming proficient takes time

however this comes slowly as utility is unlocked.
As summarised by John Kitchin:

“Scientific publishing is a career-long activity,
and one should not shy away from learning
a tool that can have an impact over this time
scale.” (19)

While this still holds true, the author feels it is
imperative to add the same is true of all aspects
of a scientist’s workflow including productivity,
reference management and data analytics.
Additionally, despite best efforts, all aspects of

an Emacs workflow may not be possible. Email
is possible within Emacs. However due to some
institutions’ policies, such as Azure Information
Protection, it may not be possible to set up due
to issues with accessing confidential information
without support from the host organisation. In this
case it would not be possible to utilise such a tool.
Similarly, while FOSS software allows for flexibility
and the ability to create one’s own code, a user
will be dependent on the software being correctly
maintained. This lack of warranty is an inherent
issue with FOSS. With repositories like GitHub (and
similar), it is possible to access, fork and publish
or maintain one’s own repositories for tools at a
personal or institutional level, providing licensing
conditions allow.
The maintenance overhead should not be

underestimated, especially when considering issues
with business continuity. However, this is not a new
problem and, if the value is seen, institutions can
add resource to deliver long lasting FOSS solutions.
Parallels can be drawn to the development of the

Fig. 6. Examples of: (a) plot produced from: (b) code written within an Org file

 (a) (b)

 20 40 60 80 100
x

17500

15000

12500

10000

7500

5000

2500

0

y

128 © 2022 Johnson Matthey

https://doi.org/10.1595/205651322X16316969040478 Johnson Matthey Technol. Rev., 2022, 66, (2)

Linux kernel. Here private companies contribute
extensively to the FOSS development because
there is an understanding of the value of that
project to their business interest (20).
While FOSS approaches offer great benefits,

the use of proprietary or closed source software
is preferable when that software offers utility
not possible by other routes. Complex analysis
using statistical software, complex peak fitting or
databases requiring subscriptions are still a reality
of the profession. When these tools are needed the
approach outlined above still works providing the
data can be exported from such a program into a
plain text format. If this is not possible and FAIR
principles cannot be upheld, the use of such a tool
should be re-evaluated to determine if its use can
facilitate long term and sustainable analysis.

Conclusions

Emacs is a powerful and versatile tool for modern
science. It facilitates the production, handling and
analysis of data in a FAIR fashion while allowing
modern scientists to be as agile as possible. By using
tools under one FOSS umbrella huge productivity
gains can be realised along with improvements in
ergonomics and associated cost benefits with the
removal of proprietary software tools. The learning
curve should be viewed in the context of a lifelong
scientific career. With institutions understanding
the value of data beyond a single scientist, applying
(or supporting individuals who wish to apply)
this type of workflow more widely would have a
profound and long last effect beyond the career of
just one scientist.

Acknowledgements

The author would like to thank Ed Wright, Ludovic
Briquet, Carl Tipton and Cristina Estruch Bosch
of Johnson Matthey for fruitful discussion and
feedback during the drafting process.
Mac and macOS are trademarks of Apple Inc,

registered in the USA and other countries and
regions. Microsoft, Azure, Office and Windows are
trademarks of the Microsoft group of companies.
All other trademarks are the property of their
respective owners.

References

1. M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg,
G. Appleton, M. Axton, A. Baak, N. Blomberg,
J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne,

J. Bouwman, A. J. Brookes, T. Clark, M. Crosas,
I. Dillo, O. Dumon, S. Edmunds, C. T. Evelo,
R. Finkers, A. Gonzalez-Beltran, A. J. G. Gray,
P. Groth, C. Goble, J. S. Grethe, J. Heringa,
P. A. C. ’t Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok,
S. J. Lusher, M. E. Martone, A. Mons, A. L. Packer,
B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik,
S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater,
G. Strawn, M. A. Swertz, M. Thompson, J. van der
Lei, E. van Mulligen, J. Velterop, A. Waagmeester,
P. Wittenburg, K. Wolstencroft, J. Zhao and
B. Mons, Sci. Data, 2016, 3, 160018

2. R. Hai, S. Geisler and C. Quix, ‘Constance:
An Intelligent Data Lake System’, in “SIGMOD
’16: Proceedings of the 2016 International
Conference on Management of Data”, Association
for Computing Machinery, New York, USA, June,
2016, pp. 2097–2100

3. W. Hasselbring, L. Carr, S. Hettrick, H. Packer and
T. Tiropanis, Inform. Technol., 2020, 62, (1), 39

4. F. Massingberd-Mundy, S. Poulston, S. Bennett,
H. H.-M. Yeung and T. Johnson, Sci. Rep., 2020,
10, 17355

5. M. D. M. Dryden, R. Fobel, C. Fobel and
A. R. Wheeler, Anal. Chem., 2017, 89, (8), 4330

6. N. M. O’Boyle, M. Banck, C. A. James, C. Morley,
T. Vandermeersch and G. R. Hutchison,
J. Cheminform., 2011, 3, 33

7. D. Schindler, B. Zapilko and F. Krüger, ‘Investigating
Software Usage in the Social Sciences: A
Knowledge Graph Approach’, 17th International
Conference, ESWC 2020, Heraklion, Crete,
Greece, 31st May–4th June, 2020, “The Semantic
Web”, eds. A. Harth, S. Kirrane, A.-C. N. Ngomo,
H. Paulheim, A. Rula, A. L. Gentile, P. Haase and
M. Cochez, Lecture Notes in Computer Science,
Vol. 12123, Springer, Cham, Switzerland, 2020,
pp. 271–286

8. G. S. Adams, B. A. Converse, A. H. Hales and
L. E. Klotz, Nature, 2021, 592, (7853), 258

9. 9th WSEAS International Conference on Data
Networks, Communications, Computers (DNCOCO
’10), University of Algarve, Faro, Portugal,
3rd–5th November, 2010, “Advances in Data
Networks, Communications, Computers”, eds.
N. E. Mastorakis and V. Mladenov, World Scientific
and Engineering Academy and Society Press,
Athens, Greece, 2010

10. J. Lazar, A. Jones and B. Shneiderman, Behav.
Inform. Technol., 2006, 25, (3), 239

11. A. N. Meyer, L. E. Barton, G. C. Murphy,
T. Zimmermann and T. Fritz, IEEE Trans. Software
Eng., 2017, 43, (12), 1178

12. E. Schulte and D. Davison, Comput. Sci. Eng.,
2011, 13, (3), 66

129 © 2022 Johnson Matthey

https://doi.org/10.1595/205651322X16316969040478 Johnson Matthey Technol. Rev., 2022, 66, (2)

13. M. L. Pace, Limnol. Oceanogr. Bull., 2020, 29, (1),
20

14. B. Maher and M. S. Anfres, Nature, 2016, 538,
(7626), 444

15. D. J. Simons and K. M. Galotti, Bull. Psychon.
Soc., 1992, 30, (1), 61

16. B. J. C. Claessens, W. van Eerde, C. G. Rutte and
R. A. Roe, Person. Rev., 2007, 36, (2), 255

17. F. Heylighen and C. Vidal, Long Range Plan., 2008,
41, (6), 585

18. D. Cordes and M. Brown, Computer, 1991, 24,
(6), 52

19. J. R. Kitchin, ACS Catal., 2015, 5, (6), 3894

20. D. Homscheid, J. Kunegis and M. Schaarschmidt,
‘Private-Collective Innovation and Open Source
Software: Longitudinal Insights from Linux Kernel
Development’, 14th IFIP WG 6.11 Conference on
e-Business, e-Services, and e-Society, I3E, Delft,
The Netherlands, 13th–15th October, 2015, “Open
and Big Data Management and Innovation”, eds.
M. Janssen, M. Mäntymäki, J. Hidders, B. Klievink,
W. Lamersdorf, B. van Loenen and A. Zuiderwijk,
Lecture Notes in Computer Science, Vol. 9373,
Springer, Cham, Switzerland, 2015, pp. 299–313

The Author

Timothy Johnson (PhD, MChem, CChem) is a Senior Scientist who has worked at Johnson
Matthey since 2016. His research interests focus on the production, characterisation and
testing of porous materials for industrial applications. He is passionate about understanding
workflows to reduce workloads and improve productivity.

