cover the much publicised hydrogenation of butadiene and \(\alpha,\beta \)-unsaturated carbonyl compounds, but I would encourage them (and those reading) to investigate further the role of heterogeneous catalysts in the selective hydrogenation of molecules containing functions such as aromatic rings, heterocycles, nitro groups and nitriles, halides and protecting groups. Catalysts capable of selectively hydrogenating the aforementioned groups, in the presence of others, are in high demand, and the pharmaceutical, agrochemical and fine chemical industries would value them greatly.

As Professor Geoffrey Bond states in the preface, no single mind can fully comprehend the entirety of a subject as diverse as supported metal catalysts. The book does not aim to do this, but presents each chapter in a readable manner, with overviews of the critical aspects of the subject and a thorough reference list for the reader to find greater detail if they wish. As a stand-alone publication, it provides good reference to aspects of heterogeneous catalysis. As part of the “Catalytic Science Series”, it is an invaluable tool to research students and industrial chemists in catalysis.

The Reviewer
Neil McGuire is a Senior Development Chemist (Catalyst and Chiral Technologies) at Johnson Matthey Catalysts in the U.K. His main interests are platinum group metal heterogeneous catalysts for use in the pharmaceutical, fine chemical and agrochemical industries.

Effects of Completely Encapsulating Platinum in Ceria

It is well known that for noble metal particles supported on certain oxides, catalytic activity and selectivity for certain reactions such as CO hydrogenation can be strongly enhanced by pre-reduction. This results in the migration of atoms from the support to the surface of the noble metal particle itself to build up a partial monolayer, and is known as the strong metal-support interaction (SMSI) effect. However, in general it has always been thought that some exposed metal surface atoms are necessary to allow chemisorption and subsequent reaction.

Now, for the first time, we have shown that the complete encapsulation of noble metal particles by a reactive support also leads to good activity and excellent selectivity for the water gas shift (WGS) reaction (1).

Using solution microemulsion techniques we have made CeO\(_2\)-encapsulated platinum (Pt) and Pt/Au (platinum/gold) particles and tested their WGS activity against Pt/CeO\(_2\) catalysts made in more conventional ways. In contrast to the conventional catalysts, very few exposed Pt surface sites were found when CO was used as a probe to detect any surface Pt. On testing the catalyst using a typical WGS feed, better activity was found than with conventional catalysts, and more importantly there was no evidence of the competing reaction of methanation. This provides the strongest evidence of effective encapsulation of the Pt particles.

Characterisation of the encapsulated particles by UV spectroscopy showed a correlation of activity with CeO\(_2\) electronic structure suggesting that the presence of Pt enhances the ability of CeO\(_2\) to undertake redox chemistry and hence become active for the WGS reaction. Therefore, the encapsulation of noble metal particles by reactive oxide coatings such as CeO\(_2\) represents a new class of catalytic material which has the ability to be tuned to achieve good activity and selectivity.

Reference

The Authors
David Thompsett is a Scientific Consultant responsible for the Electrotechnology & Catalyst Preparation Department at the Johnson Matthey Technology Centre, U.K. His interests include fuel cells, catalyst preparation and characterisation, and the relationship between catalyst activity and structure. E-mail: thompd@matthey.com

S. C. Edman Tsang is Professor of Nanomaterials and Catalysis at the University of Reading, U.K. He is interested in fundamental and applied aspects of novel nanosize materials as heterogeneous catalysts, solid state absorbents and sensors, which includes synthesis, testing and characterisation of these materials. E-mail: s.c.e.tsang@reading.ac.uk

 DOI: 10.1595/147106706X95356