Johnson Matthey and Alfa Aesar support a variety of research into new applications of the platinum group metals. Here we profile one of the researchers whose work has benefited from this support. Robert Wolf is a Professor of Inorganic Chemistry at the University of Regensburg, Germany, and his work revolves around the discovery of new, reactive transition metal compounds and the development of new applications for these compounds in synthesis and catalysis.

About the Research

Ruthenium complexes with N-heterocyclic carbene (NHC) ligands are of much interest in homogeneous catalysis. We synthesised unusual cationic tetrakis-carbene complex [RuH(IMe)₄][BEt₄] (1, **Figure 1**), which features an NHC ligand (IMe) that displays four methyl substituents. This complex has a square pyramidal structure with a vacant coordination site that may be exploited advantageously for the coordination of molecules such as H₂. Using the iso-propyl-substituted ligand IPr we isolated the complex [RuCl(IPr)||(PCy₃)₂] (2, **Figure 1**), which is formed via the unusual activation of three iso-propyl C–H bonds. We are currently investigating the potential of these and related complexes as catalysts for dehydrogenation reactions. Another important aspect is the ability of complex 1 and related compounds to activate small molecules such as H₂, CO₂ and P₄.

About the Researcher

* Name: Robert Wolf
* Position: Professor of Inorganic Chemistry
* Department: Institute of Inorganic Chemistry
* University: University of Regensburg
* Street: Universitätsstr. 31
* City: Regensburg
* County: Bavaria
* Post or Zip Code: 93047
* Country: Germany
* Email Address: robert.wolf@ur.de
* Website: http://www.uni-regensburg.de/chemistry-pharmacy/inorganic-chemistry-wolf/index.html

Fig. 1. New NHC ruthenium complexes
Polynuclear hydridoruthenium complexes show the remarkable ability to activate unreactive substrates in a cooperative fashion whereby two or more metal atoms participate. Literature examples include cyclopentadienyl-substituted complexes that effect very unusual, multiple C–H and C–C bond activations. Despite such spectacular examples, suitable, reactive polyhydrides are still very scarce, however. In this project, we investigate novel polynuclear polyhydrides of ruthenium that can be utilised for the cooperative activation of unreactive bonds and in homogeneous catalysis. Figure 2 shows a range of complexes we have recently prepared. We are currently investigating the reaction chemistry and catalytic applications of these complexes. Some of them display unusual spectroscopic and magnetic properties, such as a high-spin ground state for the $3d$ metal ion in the paramagnetic complexes with $M = \text{Cr–Ni}$. Furthermore, we are currently extending our studies to other electron-rich transition metals such as rhodium and iridium.

Recent Publications

M. Plois, T. Wiegand and R. Wolf, Organometallics, 2012, **31**, (24), 8469

E.-M. Schnöckelborg, J. J. Weigand and R. Wolf, Angew. Chem., 2011, **123**, (29), 6786
