ABSTRACTS

of current literature on the platinum metals and their alloys

PROPERTIES

Adsorption and Dehydrogenation of Alcohols and Ethers on Platinum(III)

K. D. RENDULIC and B. A. SEXTON, *J. Catal.*, 1982, 78, (1), 126-135

The adsorption of 11 alcohols (C_1-C_4) and ethers (C_1-C_5) has been studied on Pt(III) by temperature programmed reaction spectroscopy. Each molecule adsorbed sequentially in two distinct states at 100K: a monolayer phase and a multilayer phase. Temperature programming the layers from 100 to 800K desorbed >90% of the parent molecule intact. The remaining monolayer fraction dehydrogenated to form adsorbed CO, H and CH_x.

Decomposition of NO₂ to NO and O on Pt(III)

D. DAHLGREN and J. C. HEMMINGER, Surf. Sci., 1982, 123, (2/3), L739-L742

The adsorption and subsequent chemistry of NO_2 on Pt(III) has been studied. At $\sim 120 \text{K}$ NO_2 adsorbs molecularly on the Pt surface. The decomposition of NO_2 to NO and O becomes appreciable at temperatures > 240 K. The decomposition of NO_2 on Pt(III) provides an efficient source of adsorbed O on this surface. The coverage of adsorbed O from this source can be significantly larger than the saturation coverage obtained from adsorption of O_2 .

Infrared Absorption of Thin Metal Films: Pt on Si

G. D. MAHAN and D. T. F. MARPLE, Appl. Phys. Lett., 1983, 42, (3), 219-221

The absorption of 3.39 μ m radiation for Pt films of thickness 0–250Å on Si has been measured. When the radiation approaches from the Si side the maximum absorptance occurs for a film of thickness 80Å. The peak absorptance at this thickness is 0.5 \pm 0.1. Schottky i.r. photodetectors are concluded to be more efficient when the metal film is very thin.

Surface Tension and Density of Alloys of Platinum with Iridium

T. A. APOLLOVA, E. L. DYBININ, M. M. MITIKO, A. I. CHELODAEV and L. L. BEZUKLADNIKOVA, *Izv. Akad. Nauk SSSR*, *Met.*, 1982, (6), 55-57

The density and surface tension of Pt-0-50at.%Ir alloys were measured from the alloying temperature to 2200°C. Extrapolation of the isomers of surface tension and density of the alloys from pure Pt to pure Ir at temperatures higher than the alloying temperature for pure Ir (24.50°C) gives the temperature dependence of the density and surface tension of Ir.

Thin Palladium Films on Silicon and Titanium

L. A. HARRIS, J. Electrochem. Soc., 1982, 129, (12), 2689-2694

Films on Pd from 20 to 160Å thick were deposited on sputter-etched Si and on Ti films on Si and then tested electrochemically in 0.5M $\rm H_2SO_4$. The characteristic Pd metal behaviour was lost with prolonged storage or with extended electrochemical cycling. The thinner films had oxidation and reduction peaks in the voltammograms similar to those of Pt metal. $\rm H_2$ sorption measured from the voltammograms indicated a definite diffusion component which limits $\rm H_2$ sorption for Pd films $> \sim 80$ Å.

Irradiation Damage in Proton Irradiated Palladium-Iron Solid Solutions

K. JANGHORBAN and A. J. ARDELL, J. Nucl. Mater., 1983, 114, (1), 66-74

TEM was used to investigate irradiation damage especially irradiation induced precipitation(IIP) by 400keV protons, over the temperature range 110 to 750°C, in Pd-Fe alloys containing 2, 8, 12 and 18at.%Fe. The irradiation microstructure was dislocation loops over temperatures 110 to 550°C, and voids up to 650°C. IIP of Pd₃Fe was observed only in Pd-18at.%Fe between 110 and 500°C. Absence of IIP in the more dilute alloys is attributed to the fast back diffusion of Fe atoms due to the high mobility of vacancies.

Isothermal Heat-Treatment and Phase Transformation of Fe-Pd Permanent Magnet Alloys

K. WATANABE, J. Jpn. Inst. Met., 1982, 46, (9), 925-928

Fe-Pd alloys containing 20-45 at. Pd were heat treated from 0-900°C to find the phase transformations and the transformation process. The alloys showed a high coercive force after prolonged heat treatment at relatively low temperatures.

Diffusivity and Solubility of Hydrogen in Pd-Ag and Pd-Au Alloys

Y. SAKAMOTO, S. HIRATA and H. NISHIKAWA, J. Less-Common Met., 1982, 88, (2), 387-395

The temperature dependences of the diffusion coefficient and the solubility of H_2 in Pd-Ag and Pd-Au alloys containing o_5o at. % Ag and Au, respectively, were investigated by the electrochemical method. The composition dependence of the diffusion coefficients of H_2 in both Pd-Ag and Pd-Au shows approximately opposite behaviour to the solubility of H_2 and thus the H_2 permeability is almost independent of composition.

A Study of the Properties and NMR Spectra of Amorphous and Crystalline Zr-Pd Hydrides

R. C. BOWMAN, M. J. ROSKER and W. L. JOHNSON, J. Non-Cryst. Solids, 1982, 53, (1, 2), 105-122

A study of the hydrides of $Zr_{65}Pd_{35}$ and $Zr_{67}Pd_{33}$ metallic glasses is presented. The alloys absorb H_2 at temperatures ranging from 150 to 225°C, to a final H concentration of $Zr_{67}Pd_{33}H_{\sim 95}$. Various measurements were taken and NMR studies of amorphous $Zr_{67}Pd_{33}H_{\sim 95}$ and single-phase crystalline hydrides $Zr_2PdH_{1.94}$ and $Zr_2PdH_{2.90}$ are reported. The amorphous hydrides exhibit enhanced H mobility compared to the corresponding crystalline hydrides. Measurements suggest that the electronic density of states at E_F is significantly lower in the amorphous hydride than in the crystalline hydride.

Thermodynamics of Pd-Cu-H Solid Solutions

M. YOSHIHARA and R. B. McLELLAN, *Acta Metall.*, 1983, 31, (1), 61–68

Solubility isobars at temperatures in the range 625–1250K were measured for Pd-Cu-H solid solutions containing 0–20 at. Cu. The H concentration was always <10⁻⁴at. The variation with Cu concentration of the partial molar thermodynamic functions of the H atoms exhibited singularities not observed in other Pd-noble metal-H systems. The observed behaviour is explained, and effects related to changes in the specific volume of the solution with Cu concentration have been calculated from elastic data measured in the same temperature range and composition.

Phase Equilibrium and Corrosion Properties of Pd-Y-Cu Alloy Systems

A. MUSHAGI, M. V. RAEVSKAIA, T. P. LOBODA and O. I. BODAK, *Izv. Akad. Nauk SSSR*, *Met.*, 1983, (1), 200–203

Physico-chemical studies were made of ternary Pd-Y-Cu alloys at 600°C. Two new ternary intermediate phases at constant Y content of 25at.% were discovered. Studies of corrosion stability of some binary and ternary Cu based alloys in 10% HNO₃ were performed.

Cobalt, Rhodium and Iridium. Annual Survey Covering the Year 1981

J. T. MAGUE, J. Organomet. Chem., 1983, 242, 241-419

Published literature from many sources, including dissertations, covering the year 1981 is reviewed. Topics examined include Rh, Ir and Co metals-C σ -bonded complexes, metal carbene complexes, metal isocyanide complexes, metal carbonyl complexes and related compounds, metal nitrosyl and aryldiazo compounds, metal alkene compounds, metal alkyne compounds, metal π -allyl compounds, metal carbocyclic compounds and metal carbaborane compounds. (705 Refs.)

Thorium Segregation to Grain Boundaries in Ir+0.3%W Alloys Containing 5-1000 ppm Thorium

C. L. WHITE, L. HEATHERLY and R. A. PADGETT, *Acta Metall.*, 1983, 31, (1), 111-119

Segregation of Th to grain boundaries in Ir + 0.3%W alloys containing 5-1000 ppm Th was observed by AES. Alloys with 5 ppm Th had grain boundary Th:Ir atomic ratios of 0.1 after a 1h, 1500°C vacuum anneal. The Th enriched region was only a few atomic layers thick. No additional increase in grain level Th levels was found as the overall Th level increased to 1000 ppm. This result indicates a solubility limit of Th in Ir+0.3%W of \leq 5 ppm; and that significant improvements in high temperature impact ductility of Ir+0.3%W should be possible with Th additions of 5 ppm.

Antiferromagnetic Ruthenium (III)

R. L. CARLIN, R. BURRIEL, K. R. SEDDON and R. I. CRISP, *Inorg. Chem.*, 1982, 21, (12), 4337-4338

The first example of antiferromagnetism in a discrete Ru(III) co-ordination compound chloropenta-ammineRu(III) chloride [Ru(NH₃)₅Cl]Cl₂ is reported.

Growth and Characterization of RuO₂ Single Crystals

Mater. Res. Bull., 1982, 17, (10), 1305-1312

Using the vapour transport technique in a flowing O₂ system, the largest single crystal RuO₂ ever reported, 10mm×5mm×5mm, has been grown. Starting materials, optimum growth conditions, morphology, stoichiometry and resistivity are reported.

CHEMICAL COMPOUNDS

Isolation of π-Olefin Platinum(II) Complexes Formed in the Reaction of Saturated Hydrocarbons with H₂PtCl₆ in CF₃COOH-H₂O Solution

G. V. NIZOVA, T. V. Z. KREVOR, A. N. KITAIGORODSKY and G. B. SHUL'PIN, *Izv. Akad. Nauk SSSR*, Ser. Khim., 1982, (12), 2805-2808

Heating of n-hexane and $\rm H_2PtCl_6$ in CF₃COOH-H₂O solution formed π -hexene Pt(II) complexes which after pyridine treatment were brought out on silica gel by chromatography as $[(C_6H_{12})PtCl_2(C_5H_5N)]$. Interaction of hexene-1, hexanol-1 and n-hexylacetate with $\rm H_2PtCl_6$ and CH₃COOH produced the same π complex of Pt(II) with hexene.

Aspects of Ruthenium and Osmium Clusters Chemistry

B. F. G. JOHNSON and J. LEWIS, *Philos. Trans. A*, 1982, 308, (1501), 5-15

A survey of synthesis, structure and bonding of a series of Ru and Os cluster carbonyl compounds, containing 3 to 10 metal atoms is presented. This series includes neutral, anionic hydride and carbido clusters all derived from [M₃(CO)₁₂].

ELECTROCHEMISTRY

Corrosion and Electrochemical Properties of Plastic Chromium Doped with Platinum and Palladium

N. D. TOMASHOV, V. I. TREFILOV, G. P. CHERNOVA, A. N. RAKITSKI, N. E. PODRIADCHENKO and E. N. USTINSKI, Zashch. Met., 1983, 19, (1), 109-112

Studies of corrosion and electrochemical behaviour of Cr doped with cathodic additions of Pt and Pd were made in 50% H₂SO₄. The results showed that Cr alloys containing Pt and Pd were easily self-passivating even in concentrated H₂SO₄ at higher temperatures. Adding into the solution a small amount of nitrate ions sharply increased the stability of the passive behaviour and the corrosion stability of the alloys in extremely aggressive solutions.

Electrochemical Behaviour of the Hydrogen-Platinum-Crystallised Phosphate Uranyl Acid (HUP) System

P. DE LAMBERTERRE, M. FORESTIER and J. GUITTON, Surf. Technol., 1982, 17, (4), 357-367

The electrochemical behaviour of electrode $H_2/Pt/HUO_2PO_4$, H_2O (HUP) was studied at room temperature. HUP is a fast proton conductor. The cathodic reaction was rapid and stable; the anodic reaction is also rapid, if it follows a cathodic treatment, otherwise a limiting anodic current is observed. It was concluded that in the $H_2/Pt/HUP/Pt/H_2$ cell water is produced at the cathodic interface and is consumed slowly at the anodic interface.

Comparative Study of LaNi₅-Type Alloy Electrodes with and without Pd-Plated Layer by Means of Cyclic Voltammetry

T. KITAMURA, C. IWAKURA and H. TAMURA, *Electrochim.* Acta, 1982, 27, (12), 1729–1731

Cyclic voltammetry was applied to the characterisation of LaNi₅-type alloy electrodes with and without a Pd-plated layer, to obtain some mechanistic information of the oxidation of absorbed H₂. As a result, this technique is found to be available not only for examining such alloy electrodes electrochemically but also estimating the equilibrium pressure of H₂ in alloys from a chemical point of view.

Study of the Adsorption and Electrochemical Properties of Thin Palladium Films on Nickel

A. E. RIVERA GARSIAS, A. M. SKUNDIN, V. S. KONDRASHEVA and M. M. GRIAZNOV, *Elektrokhimiya*, 1982, 18, (12), 1678–1680

Studies of the properties of thin Pd films on Ni were made at maximum desorption of O_2 at 0.74-0.75V in 1M H_2SO_4 and 0.71-0.72V in 0.1M NaOH. Anodic polarisation curves on massive Pd and on Pd films on Ni in 1M $CH_3OH+0.1M$ NaOH reached 25%. The results showed that Ni samples even with a very thin Pd layer obtained in 15s, behaved like pure Pd.

Investigations on the Adsorption and Electrocatalytic Oxidation of Carbon Monoxide on Gold and Palladium Alloys

K. GOSSNER and E. MIZERA, J. Electroanal. Chem. Interfacial Electrochem., 1982, 140, (1), 35-45

A bifunctional mechanism of electrocatalysis was found for the CO oxidation at Au + Pd alloys. The synergetic effect worked best for the 20% Au alloys. The different behaviour of Au + Pd and Ag + Pd was assigned to the formation of CO induced ensembles of Pd-atoms in Au + Pd alloys with high Au content, due to a high mobility of Pd atoms at the surface.

PHOTOCONVERSION

Electrochemical and Surface Characteristics of the Photocatalytic Platinum Deposits on TiO₂

M. KOUDELKA, J. SANCHEZ and J. AUGUSTYNSKI, J. Phys. Chem., 1982, 86, (22), 4277-4280

Polycrystalline ${\rm TiO}_2$ partially or completely covered with a Pt deposit formed by two different modifications of a photocatalytic method were examined by cyclic voltammetry and XPS. Strong irreversible adsorption of Pt(IV) species occurred during the initial photocatalytic Pt deposition from a solution containing hexachloroplatinate and acetate ions. A steady-state Pt coverage occurs after several hours and is not significantly affected by illuminating the ${\rm TiO}_2$ surface. Intermediates or products from acetate decarboxylation adsorbed on the ${\rm TiO}_2$ surface may block Pt photodeposition.

Hydrogen-Evolving Semiconductor Photocathodes. Nature of the Junction and Function of the Platinum Group Metal Catalyst

A. HELLER, E. AHARON-SHALOM, W. A. BONNER and B. MILLER, J. Am. Chem. Soc., 1982, 104, (25), 6942-6948

Pt, Rh, Ru incorporation in the surface of p-type semiconductor p-InP photocathodes to catalyse H₂ evolution gives efficient solar to chemical conversion.

Fluorescence of Tris (2,2'-Bipyridyl)Ruthenium(II) in Sodium Dodecyl Sulfate Solutions below the Critical Micelle Concentration

J. H. BAXENDALE and M. A. J. RODGERS, J. Phys. Chem., 1982, 86, (25), 4906-4909

Ru(bpy) $_3^{2+}$ in solutions of Na dodecyl sulphate (SDS) below the critical micelle concentration is present entirely in the form of Ru(bpy) $_3^{2+}$ -SDS clusters which behave as micelles in that they incorporate aromatic molecules which act as quenchers for emission from Ru(bpy) $_3^{2+}$. The cluster concentration was proportional to the Ru(bpy) $_3^{2+}$ concentration, and decreased as the SDS concentration increased. The Ru(bpy) $_3^{2+}$ in these clusters was found to be two phased at high exciting light intensities.

Oxygen Evolution Improvement at a Cr-Doped SrTiO₃ Photoanode by a Ru-Oxide Coating

P. SALVADOR, V. M. FERNANDEZ and C. GUTIERREZ, Solar Energy Mater., 1982, 7, (3), 323-329

The performance for water photo-oxidation of a Crdoped $SrTiO_3$ photoanode covered with a Ru oxide film was studied. The Ru oxide films were quite good electrocatalysts for O_2 evolution and can facilitate the photoevolution of O_2 in those semiconductors with a valency band only slightly positive of the O_2H_2O level. Another possible application is corrosion prevention in chalcogenide semiconductors.

Simultaneous Evolution of Hydrogen and Oxygen by Water Photolysis with Prussian Blue and Tris (2,2'-Bipyridyl)-Ruthenium(II) Complex

M. KANEKO, N. TAKABAYSHI and A. YAMADA, Chem. Lett., 1982, (10), 1647-1650

Simultaneous evolution of H_2 and O_2 was achieved by visible light irradiation of H_2O containing prussian blue and tris (2,2'-bipyridyl)Ru(II) complex. The gases evolved were analysed by gas chromatography and mass spectroscopy.

Photooxidation of Water in Colloidal Clay Suspensions and in Aqueous Solutions Using Ru(bpy)₂(H₂O)²⁺₂ as Catalyst H. NIJS, M. I. CRUZ, J. J. FRIPIAT and H. VAN DAMME, Nouv. J. Chim., 1982, 6, (11), 551–557

The mechanism of catalytic activity of $Ru(bpy)_2/H_2O)_2^{2}$ in the oxidation of H_2O in homogeneous medium and in heterogeneous clay suspensions was investigated by comparing the cis and trans behaviour in various oxidations. O_2 is shown to be evolved by a true tetra-electronic oxidation process. The catalytically active isomer is the cis isomer. Several possible catalytic cycles are discussed. The system has high efficiency down to very acidic conditions (pH \sim 0), but is unstable.

HETEROGENEOUS CATALYSIS

Effect of Rhenium Addition to Pt-Al₂O₃ Catalysts on Dehydrogenation of High Molecular Weight n-Paraffins

E. A. TIMOFEEVA, A. P. TIUPAEV and G. V. ISAGULIANTS, Izv. Akad. Nauk SSSR, Ser. Khim., 1982, (12), 2654-2658

Studies of the effect of Re on the selectivity and activity of 0.5%Pt/ γ -Al₂O₃ catalysts were made during dehydrogenation of high molecular weight n-paraffins in the presence of H₂. Catalysts modified with Re showed higher catalytic activity but no changes in the selectivity occurred. The addition of 0.5–1%Li into 0.5%Pt-Re/ γ -Al₂O₃ catalysts increased the selectivity of n-mono-olefins, and no decrease in dehydrogenation activity occurred as it did in Pt/Al₂O₃ catalysts without Re.

New Metallic Catalysis Obtained by Supporting Platinum on AlPO₄-Al₂O₃ and AlPO₄-SiO₂ Systems

M. A. ARAMENDIA, V. BORAU, C. JIMENEZ and J. M. MARINAS, Acta. Chim. Acad. Sci. Hung., 1982, 110, (4), 97-101

The synthesis and catalytic performance of metallic systems obtained by supporting Pt on AlPO $\sqrt{\gamma}$ -Al $_2$ O $_3$ and AlPO $\sqrt{\gamma}$ SiO $_2$ at low metallic loading is reported. Their performance in the reduction of alkenes at low H $_2$ pressures of 1-5bar is reported.

Effect of the Nature of Supports on the Platinum State in Platinum Catalysts

L. IA. MOSTOVAIA, N. S. KOZLOV, A. F. YANCHUK and L. I. TITOVA, *Dokl. Akad. Nauk BSSR*, 1982, 26, (11), 1014-1016

Spectroscopic studies were made of 0.5wt.% Pt catalysts supported on γ -Al₂O₃, MgO and SiO₂ prepared by saturation of the supports by aqueous solutions of (NH₄)₂PtCl₄ and (NH₄)₂PtCl₆. Pt was found to be uniformly dispersed on the γ -Al₂O₃ support whereas on the MgO and SiO₂ supports an agglomeration of metal particles was observed.

The Role of Catalyst Presulfurization in Some Reactions of Catalytic Reforming and Hydrogenolysis

C. R. APESTEGUIA and J. BARBIER, J. Catal., 1982, 78, (2), 352-359

Three reforming catalysts, Pt/Al₂O₃, Pt-Ir/Al₂O₃ and Pt-Re/Al₂O₃ were sulphurised by H₂S. The S levels for each catalyst, localised on the metal, give atomic ratios S: Me near 0.5. For the same S coverage Pt-Re catalysts are more deactivated than Pt or Pt-Ir catalysts; but addition of small quantities of Ir to Pt increases S resistance.

Cutbacks in Throughput May Encourage Revamps in Cat-Reformer Operations

P. J. NAT, Oil Gas J., 1982, 80, (49), 136-138, 143

Changes which have brought about the reduction of operating pressures in reformers are discussed. These include Pt-Re catalysts with high Re content and enhanced stability; improved pretreatments and increasing the density of the catalyst bed. Figures for cycle life, throughput, fuel prices, etc., from a 1 year cycle are presented and evaluated.

The Oscillatory Oxidation of Carbon Monoxide over Pt, Pd and Ir Catalysts: A Kinetic Model

J. C. TURNER, Ph.D.Thesis, University of California, San Diego, 1982, Diss. Abstr. Int. B., 1982, 43, (3), 741

Oscillations in the rate of CO oxidation were studied over Pt, Pd and Ir using a flow reactor. The oscillations were found to occur between two branches of a Langmuir-Hinshelwood reaction. A time dependent model is proposed for the oscillations. Rates of oxide formation and CO reduction were also measured.

Liquid Phase Hydrogenation of Furfural in the Presence of Palladium Catalyst

V. F. PECHENKINA, M. S. ERZHANOVA and N. A. ZIBROVA, *Khim. Khim. Tekhnol.*, 1982, **25**, (10), 1209–1212

Studies were made of liquid phase hydrogenation of furfural in the presence of PdCl₂ catalyst and Pd supported catalysts on Al₂O₃, C, γ -Al₂O₃ and SiO₂. The rate of hydrogenation was 5-7 times higher on supported catalysts; the most active were Pd catalysts supported on Al₂O₃ and C.

Hydrogenation of Cyclopentadiene to Cyclopentene on Alumina-Palladium-Sulphide Catalyst

S. G. GAGARIN, S. S. MAKAR'EV and A. A. KRICHKO, Neftekhimiya, 1982, 22, (6), 735-742

Feasibility studies were made of the selective hydrogenation of cyclopentadiene to cyclopentene over 0.2% PdS/Al₂O₃ catalysts at a pressure of 0.5MPa and temperature of 300–310K. Process conditions allowed production of cyclopentene to 99.99% purity.

Reactivity of CO with a Rh/TiO₂ Catalyst

J. C. CONESA, M. T. SAINZ, J. SORIA, G. MUNUERA, V. RIVES-ARNAU and A. MUÑOZ, *J. Mol. Catal.*, 1982, 17, (2-3), 231-240

The reactivity of CO with a RhCl TiO₂ catalyst was studied using ESR and i.r. Different results were found depending on the manner of contacting the catalyst with the gas. CO was absorped at low pressure and 300K, and heating at 373K caused CO dissociation forming C which reacted with H₂ to give alcohols. On carrying out the adsorption of CO at 77K and higher pressure, and subsequently heating the sample at 373K, a reversible reduction was observed on cooling to 77K.

Hydrogenation of Coal-Derived Liquids in the Presence of Rhodium Complexes

I. W. RAJCA, V. V. ABALAYEVA and A. F. BOROWSKI, *Fuel*, 1982, **61**, (12), 1292–1294

Hydrogenation of the 473–573K distillate derived from the product of catalytic hydrogenation of coal in the presence of $\rm H_2$ donor solvent and ethyl alcohol, and dimethyl-formamide extracts of the tar from low temperature coal carbonisation were investigated in the presence of Rh complexes. The Rh complexes in homogeneous and in immobilised forms are catalytically active for hydrogenation of these coal-derived liquids.

Kinetics of the Fischer-Tropsch Synthesis R. S. DIXIT and L. L. TAVLARIDES, *Ind. Eng. Chem.*,

Process Des. Dev., 1983, 22, (1), 1-9

The kinetics of the Fischer-Tropsch synthesis reactions were studied in an internally recycled reactor over a commercial 0.5% Ru/p-Al₂O₃ catalyst. Steady-state turnover numbers were obtained for 3:1 and 2:1 H₂:CO feed gas at 200–300°C, 0.6–10MPa and a weight hourly space velocity of 0.1–0.5/h.

A Composite Zeolite Catalyst for Olefin Synthesis Prepared by a Novel Metal-Loading Method

T. INVI, G. TAKEUCHI and Y. TAKEGAMI, Appl. Catal., 1982, 4, (3), 211-221

Ru/- and Rh/Al₂O₃ catalysts had considerably delayed deactivation due to coke formation and had longer catalyst lifespans compared with the lifespans of conventionally prepared catalysts. The catalysts were prepared by a new metal loading method—the crystallisation nuclei method. Metal-loaded Al₂O₃ powder was suspended in an aqueous solution containing Na aluminate before the preparation of gel materials for crystallisation to zeolite. The particles acted as nuclei for zeolite growth and were highly dispersed on the zeolite crystals. The catalysts were used for selective olefin synthesis from methanol.

CO-H₂ Reactions in Liquid Phase in Presence of Metals of Group 8

A. KLENNEMANN, G. JENNER, E. BAGHERZADAH and A. DELUZARCHE, *Ind. Eng. Chem.*, *Prod. Res. Dev.*, 1982, 21, (3), 418-424

The effect of Ru, Rh, Co, etc., catalysts in Group VIII was studied during synthesis of hydrocarbons and alcohols through hydrocondensation of CO. Rh, Ru and Co complexes were most active. The use of very high pressures of 3000bar leads to the successful synthesis of saturated long-chain alcohols C₁ to C₈ with Ru according to a Schulz-Flory distribution. The effects of temperature, CO:H₂ ratio, solvent, pH and additives were also studied.

Methane Oxidative Chlorination Catalysed by Ruthenium and Platinum Compounds Supported on Al₂O₃

V. P. TRETIAKOV and A. N. OSETSKII, *Kinet. Katal.*, 1982, 23, (5), 1126–1129

Studies of the catalytic activity of $K_4Ru_2OCl_{10}$ and K_2PtCl_4 complexes deposited on Al_2O_3 made during oxidative chlorination of CH_4 showed that under 350°C both catalysts were more active than $CuCl_2$ based catalysts. Mechanistic behaviours of Pt and Ru were different. Reaction in the presence of Pt included activation of alkane by formation of intermediate Pt-alkyl compounds.

HOMOGENEOUS CATALYSIS

Rh₂(OAc)₄-PPh₃ as a Catalyst for the Liquid-Phase Dehydrogenation of 2-Propanol

S. SHINODA, T. KOJIMA and Y. SAITO, *J. Mol. Catal.*, 1983, 18, (1), 99–104

The most active homogeneous catalyst hitherto known for the selective dehydrogenation of 2-propanol was found to form Rh₂(OAc)₄ by adding PPh₃ in situ. Drastic changes in catalytic properties occurred by replacing Rh₂(OAc)₄ with Rh₂(OCOCF₃)₄ or PPh₃ with P(OPh)₃ which indicate prospects of tailor-making the catalyst.

Ethylene Dimerisation in the Presence of Rhodium Complex with Tin Chloride Ligands

V. M. IGHATOV, N. V. BORUNOVA, C.-I. DZEN, A. F. LUNIN and L. KH. FREIDLIN, Neftekhimiya, 1982, 22, (6),

Studies of the catalytic properties of Rh complexes with SnCl₃-ligands, [Rh₂Cl₂(SnCl₃)₄]⁴-, were made during ethylene dimerisation. The catalyst was more active and stable than RhCl₃. 3H₂O. The most active complex had a ratio Sn: Rh = 2 and concentration of HCl > 0.5 mole/l. Ethylene dimerisation reaction was first order for the catalyst and ethylene, and was highly selective, forming an equilibrium mixture of butene: butene-I(3%) and butene-I(3%).

FUEL CELLS

Oxidation of H_2 at Gas Diffusion Electrodes in H₂SO₄ and HBr

G. G. BARNA, S. N. FRANK and T. H. TEHERANI, J. Electrochem. Soc., 1982, 129, (11), 2464-2468

The oxidation of H, at a Pt-black catalysed gas diffusion fuel cell electrode was found to be diffusion limited in H₂SO₄, but kinetically controlled in 48% HBr. The method to activate the anodes completely wets all the Pt in the anode. All of this wetted Pt then participates in the oxidation of H2. This proves that the anodes are flooded and are operating at the theoretical current limit. Further improvements will be achieved through using Pt/C where the available surface area of Pt is maximised.

Shallow Junctions in Silicon

ENGINEERING

BROWN, J. Appl. Phys., 1982, 53, (12), 8856-8862 Ohmic contact to shallow pn+ and pn+ junctions in Si were studied. Thin layers (~200Å) of Pt were sputter deposited and reacted with the Si substrate at 590°C to give a stable Pt silicide. A four terminal Kelvin-resistor structure was used to measure accurately the contact resistance. Pre-deposition and in situ etching resulted in considerable improvement in the measured specific contact resistance. Values well within the range required were obtained.

ELECTRICAL AND ELECTRONIC

Platinum Silicide Ohmic Contacts to

S. S. COHEN, P. A. PIACENTE, G. GILDENBLAT and D. M.

Evaluation of Palladium An Palladium-Silver Alloy in a Dual-in-Line Package Switch

W. R. HAIN, J. A. CLISURA and W. L. RUDLOFF, IEEE Trans. Components, Hybrids, Manuf. Technol., 1982, CHMT-5, (1), 16-22

Pd and 60%Pd-40%Ag were evaluated as potential substitutes for Au contacts in a dual-in-line package switch, of the rocker type. Switches were evaluated for thickness and hardness, formability and adhesion, porosity before and after 2000 cycles, wearability and contact resistance before and after 2000 cycles. Results show that Au to Pd or Au to 60%Pd-40%Ag will provide stable contact resistance with acceptable wear properties.

NEW PATENTS

METALS AND ALLOYS

High Chromium Superalloy

JOHNSON MATTHEY P.L.C. European Appl. 65,812 Alloys having good high temperature 1000-1100°C resistance to molten glass and good mechanical properties, for use in centrifugal spinners for glass fibre production, are Ni-Cr alloys having less than 25 vol.% of γ' precipitate and containing up to 1.7% C, 0.3-4% Pt and/or Ru and up to 1.5% Ti and/or Al.

ELECTROCHEMISTRY

Electrochemical Cell

THE ELECTRICITY COUNCIL British Appl. 2,098,238 A The efficiency of an electrochemical cell having RuO, Pt-Ir or platinised Ti electrodes is improved by positioning a turbulence promotor, such as a plastic mesh insert, in a flow path over one of the cell electrodes. The cell may be used for electrochemical reduction of oxidation.

Hydrogen Evolution Electrode

DIAMOND SHAMROCK CORP.

European Appls. 62,950/51

Cathodes for H, evolution from aqueous electrolytes consist of a valve metal support coated with a catalyst finely dispersed in a matrix of semiconducting polymer. The polymer may be polyphenylene and the catalyst is a platinum group metal.

Hydrogen by Electrolysis

WESTINGHOUSE ELECTRIC CORP.

European Appl. 63,420

An electrolyser for the production of H, from dilute H₂SO₄ saturated with SO₂ consists of a series of half cells in which the anodes are preferably pellets of activated vegetable C mixed with 1-5% Pt powder.

Improved Anode for Halogen Production

U.S. Patent 4,333,805 GENERAL ELECTRIC CO.

Cl₂ or another halogen is produced electrolytically in a cell having a new catalytic anode consisting of 90% Ru oxide and 10% Mn oxide.