as-cast condition decrease linearly with increasing test temperature. The gradients of the lines are dependent on the compositions of the alloys.

The microstructural state of the material resulting from prior deformation influences in particular the magnitude of Young's modulus and the anisotropic behaviour of Poisson's ratio. Poisson's ratio is also influenced by the state of the primary as-cast microstructure.

A marked increase in damping was observed in the regions of the miscibility gaps. This suggests that the resonance method could be a sensitive technique for determining miscibility gaps in materials which can be subjected to mechanical oscillations and whose basic damping, d, is less than 10^{-3} (21). Further microstructural and crystallographic investigations are required to confirm these correlations.

References

6. G. Reinacher, “Platin–Platinlegierungen”, op. cit., (Ref. 5)
7. G. Reinacher, “Rhodium”, op. cit., (Ref. 5)
9. W. Köster, Z. Metallkd., 1948, 39, 1
21. H. Knake and M. Töpfer, Thüringer Werkstofftag of the Technical University of Ilmenau, 15 March 1999

The Authors

Jurgen Merker was a Development Project Manager with W. C. Heraeus GmbH & Co. KG until May 2000. His main activities were in the processing and characterisation of platinum materials and the pgms for high temperature applications.

David Lupton is a Development Manager of the Engineered Materials Division with W. C. Heraeus GmbH & Co. KG. He is particularly involved in the metallurgy of the pgms, refractory metals and other special materials.

Michael Töpfer is a Technical Research Assistant in the Technical Institute of the Friedrich Schiller University of Jena. His major field of interest is the determination of material properties by dynamic oscillation techniques.

Harald Knake is Professor of Applied Mechanics at the Friedrich Schiller University of Jena and specialises in the elastic properties of materials.

Ruthenium-Initiated Star Polymers

Star-shaped polymers are attracting interest as polymeric materials because of their unusual structures. Such structures can be made by living polymerisation processes, one of which involves a linking reaction using living linear polymers and divinyl compounds.

Researchers at Kyoto University in Japan now report a multi-arm star-shaped polymer with a cross-linked microgel core (K.-Y. Baek, M. Kamigaito and M. Sawamoto, Macromolecules, 2001, 34, (2), 215–221). Using in-situ polymerisation of methyl methacrylate (MMA), a halide initiator and RuCl3(PPh3)3, in the presence of Al(Oi-Pr)3, a living poly(MMA) was formed which on reaction with a divinyl compound resulted in star-shaped polymers.

The yield depended on the structures of the initiators, divinyl compounds, monomers and other reaction conditions. The best system gave a polymer of about 20 poly(MMA) arms per molecule.