can of course be assembled to provide the throughput required.

In the National Cylinder Gas plant the feed hydrogen, more than 99.7 per cent pure, is preheated to around 315°C, while the diffusion cells are maintained at the same temperature. The diffusion rate depends upon the partial pressure of hydrogen in the gas stream and the rate of circulation of the feed gas. The temperature of around 315°C is the minimum at which the rate of diffusion through the alloy becomes a practical proposition, but the hydrogen pressure differential across the alloy tube walls and the rate of bleed-off from the cells are factors which influence the economics of operating a diffusion unit.

The National Cylinder Gas installation employs electrolytic hydrogen, the 0.3 per cent of impurities consisting primarily of oxygen, with some nitrogen, methane and water. Hydrogen produced from hydrocarbon reforming processes would of course contain also carbon monoxide and carbon dioxide, but these would not affect performance. The only impurities that do in fact interfere with diffusion are unsaturated hydrocarbons and sulphur, but the former can be removed by a hot air purge of the cells, while the latter can readily be removed by normal methods before being allowed to reach the diffusion unit.

The factors that led National Cylinder Gas to install their diffusion plant were mainly the safety, simplicity and ease of operation of the Bishop system. The unit has no moving parts, and the capital cost represents almost the total expense. Control of the process is simple, consisting only of analysis of the output stream.

Surface Phenomena at Platinum Electrodes

ADSORPTION OF CATIONS AT ANODIC POTENTIALS

When platinum electrodes are used for the anodic formation of persulphuric acid, the nature of the cations present has long been known to have a marked influence on the kinetics of the anodic oxidation; at any given potential, the rate of persulphate formation is diminished by the presence of alkali metal ions, the effect increasing in the order Li⁺ < Na⁺ < K⁺ < Cs⁺. Experiments on the anodic evolution of oxygen from perchloric acid, which is also influenced by the nature and concentration of the cations present, have shown that the platinum surface changes with time, chemisorbed oxygen being produced.

In a review paper recently published (Electrochimica Acta, 1961, 5, 265 – in French) Professor A. N. Frumkin, of the Institute of Physical Chemistry, Moscow, draws together a number of phenomena concerned with the surface of platinum anodes, and puts forward the view that the dipolar nature of the platinum-oxygen bond promotes the adsorption of cations. At high anodic polarisations, definite oxide films are formed, as indicated by earlier work. Cation adsorption has been directly demonstrated by the use of caesium ions labelled with Cs¹³⁹.

Both the adsorption of cations and the oxidation of the surface inhibit anodic oxidations such as persulphate formation and oxygen evolution. With the alkali metal ions, the cation effect increases in the order Li⁺ < Na⁺ < K⁺ < Cs⁺, undoubtedly the order of increasing specific adsorbability, when platinum is polarised anodically in 6N sulphuric acid and in electrolytes such as 5N H₂SO₄, 1N Li₂SO₄. Even 0.01N Cs⁺ has an appreciable influence. A similar although smaller effect of Cs⁺ can be found on the evolution of oxygen from the oxide-covered surface of passive iron.

In this important paper Professor Frumkin gives sixty-six references to earlier work in his own and other laboratories on the platinum anode. In view of the importance of platinum as a so-called “inert” electrode in electrolytic processes, in cathodic protection and in fundamental investigations, it is surprising that its actual “reactivity” has been relatively little studied; the paper is valuable in drawing attention to many points urgently needing further examination, as well as being an excellent summary of what is known to date.

T.P.H.